<em id="rw4ev"></em>

      <tr id="rw4ev"></tr>

      <nav id="rw4ev"></nav>
      <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
      合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

      &#160;代寫MCEN30017、代做C++,Java程序
      &#160;代寫MCEN30017、代做C++,Java程序

      時間:2024-10-18  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



       Department of Mechanical Engineering
       Mechanics and Materials (MCEN30017)
       Part 2: Finite Element Analysis (FEA)
       Semester 2, 2024
      Assignment 
      Objective: 
      This assignment aims to evaluate students’ ability to use an analytical FEA approach to solve 
      1D/2D structural problems (see examples in lecture notes_ and utilize both Matlab and a 
      commercial FEA package to give a flavor of conducting research to students and prepare them 
      for structural integrity of a modern world engineering problem. 
      Assessment: 
      This assignment constitutes 25% of your total grade. You are required to submit an individual 
      report addressing all the questions. The report must be submitted online through the LMS by 
      Friday, October 18, 2024, at 23:59. 
      The report should be at least 15 pages long, including figures, in a word or pdf document format. 
      Alternatively, you may submit a written report of at least 10 to 12 pages, including figures, 
      accompanied by a 4 to 6-minute video presentation (e.g., a voice-over PowerPoint), explaining 
      your steps for conducting the FEA simulations required for Question 3. 
      We recommend using an equation editor for writing mathematical equations and formulas. 
      However, you may also use clear and legible handwritten equations if preferred. Section 1: FEA analytical approach 
      Question 1. (20 marks) 
      For the plane truss shown in figure 1, determine the horizontal and vertical displacement of node 
      1 and node 2, and calculate the stresses on rods A, B, C. Let Young’s modulus    = 210        & 
      uniform cross-section area    = 4 × 10
      −4
         2
       for all elements. You should demonstrate: 
      a) Calculation of the stiffness matrix for each rod in this figure 
      b) Calculation of displacements on nodes 1 and 2 in both horizontal and vertical directions 
       
      Figure 1 
      Question 2. (20 marks) 
      Most of the engineering problems fall into a category of solution of a partial differential equation 
      (PDE). There are analytical, experimental, and numerical methods to solve these PDEs. Read 
      the following documentation (only the uniaxial tension section) on analytical stress analysis of a 
      circular hole in an infinite plate (you can search for “stress concentrations at holes”). 
      https://www.fracturemechanics.org/hole.html 
      Download the Matlab code for assignment on LMS, or alternatively go through the following 
      MATLAB help center which guides you through simulation of a circular hole in a rectangular 
      strip. 
      https://au.mathworks.com/help/pde/ug/stress-concentration-in-plate-with-circular-hole.html 
      B (4m)
      C (3m)
      F (4m)
      E (4m)
       (3m)
      4000 N
      3000 N

      5Following the instructions, instead of a rectangle, design a square with a circular hole in the 
      middle of it. Call circular hole diameter “d” and square width “w” and use only fine mesh. We 
      know that the analytical solution is not valid anymore if “d/w” parameter is not small enough. 
      a) This is the analytical method to the solution of a PDE. Write a maximum of 2 paragraphs 
      on your understanding of the nature of the problem. (4 marks). 
      b) Iterate multiple times and report the minimum “d/w” in which maximum stress is three 
      (3) times higher than the average stress at the edge of the square. Hint: you can find the 
      average stress on one edge and on the centerline similar to the way stress is defined on 
      the circle (a few lines of code). (8 marks) 
      c) Make a similar geometry in SolidWorks and conduct an FEA analysis. Present both results 
      (8 marks) 
       
      Section 2: FEA numerical approach 
      Question 3 (60 marks) 
      During the tutorial sessions, we have learned how to design and analyze an FEA model. Try to 
      design the model below in SolidWorks and report the required steps to perform a valid simulation 
      for a prosthetic hip joint replacement. You are supposed to generate the backbone of your model 
      first. Subsequently, add fillets and cut-extrudes to the model to generate the final model as 
      proposed in the next page. Keep the 10 mm bottom edge of the model, and its midpoint as a 
      reference to start your design. Each fillet size is simply written as   5 as an example to convey a 
      5 mm fillet.  
       
       The common practice is to use a dynamic load on the joint; however, we simplify the modeling 
      with a 1500 Newtons of load applied to the spherical part of the joint. 
      In your report/video presentation: 
      i) Show how you construct your model (use revolve feature), select your material 
      (Titanium alloy- Titanium (Ti-6Al-4V)). (15 marks) 
      ii) Present the boundary conditions that you use to initiate your simulation. In order not 
      to have a rotation in your model, what type of B.C. you would use, and on what 
      edges/faces? Justify your boundary conditions. (10 marks) 
      iii) Perform a mesh sensitivity analysis and demonstrate the regions of high stress on your 
      model, which require further refinement of mesh. Explain your strategy to refine mesh 
      on high stress/ critical zones and report the appropriate mesh size. (10 marks) 
      iv) Present the regions of high stress in your model based on Von-mises stress. 
      Demonstrate a graph for the region with the highest stress. Are you able to reduce 
      this stress in your model? (10 marks). 
      v) A design engineer has recommended reducing the weight of implant considering a few 
      holes inside the model. Apply a 1 mm fillet for each hole. Develop your model based 
      on the suggested design and conduct a design study to investigate the most appropriate 
      size of the holes in your model. Try holes with a diameter of 6, 8, 10, 12 mm. (15 
      marks)  
      請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




       

      掃一掃在手機打開當前頁
    1. 上一篇:MATH36031代做、代寫MATLAB程序語言
    2. 下一篇:廣東深圳廣州最牛的寶寶取名專家公司起名大師最靠譜的聯系電話和微信QQ熱線
    3. ·&#160;代寫ICT50220、C++/Java程序語言代做
    4. ·CS2204編程代寫、代做Java程序語言
    5. ·&#160;ICT50220代做、代寫c++,Java程序設計
    6. ·CS439編程代寫、代做Java程序語言
    7. ·ELX304編程代寫、代做Python/Java程序語言
    8. ·代做NEKN96、代寫c/c++,Java程序設計
    9. ·CRICOS編程代做、代寫Java程序設計
    10. ·MDSB22代做、代寫C++,Java程序設計
    11. ·代寫IK2215、代做java程序語言
    12. ·U6300編程代做、代寫c/c++,Java程序語言
    13. 合肥生活資訊

      合肥圖文信息
      出評 開團工具
      出評 開團工具
      挖掘機濾芯提升發動機性能
      挖掘機濾芯提升發動機性能
      戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
      戴納斯帝壁掛爐全國售后服務電話24小時官網
      菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
      菲斯曼壁掛爐全國統一400售后維修服務電話2
      美的熱水器售后服務技術咨詢電話全國24小時客服熱線
      美的熱水器售后服務技術咨詢電話全國24小時
      海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
      海信羅馬假日洗衣機亮相AWE 復古美學與現代
      合肥機場巴士4號線
      合肥機場巴士4號線
      合肥機場巴士3號線
      合肥機場巴士3號線
    14. 上海廠房出租 短信驗證碼 酒店vi設計

      成人久久18免费网站入口