日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做NEKN96、代寫c/c++,Java程序設計
代做NEKN96、代寫c/c++,Java程序設計

時間:2024-10-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Homework Assignment 1
NEKN96
Guidelines
1. Upload the HWA in .zip format to Canvas before the 2nd of October, 23:59, and only
upload one HWA for each group. The .zip ffle should contain two parts:
- A report in .pdf format, which will be corrected.
- The code you used to create the output/estimates for the report. The code itself will
not be graded/corrected and is only required to conffrm your work. The easiest is to add
the whole project folder you used to the zip ffle.
1 However, if you have used online tools,
sharing a link to your work is also ffne.
2
2. The assignment should be done in groups of 3-4 people, pick groups at
Canvas → People → Groups.
3
3. Double-check that each group member’s name and ID number are included in the .pdf ffle.
4. To receive your ffnal grade on the course, a PASS is required on this HWA.
- If a revision is required, the comments must be addressed, and an updated version should
be mailed to ioannis.tzoumas@nek.lu.se. However, you are only guaranteed an additional
evaluation of the assignment in connection to an examination period.
4
You will have a lot of ffexibility in how you want to solve each part of the assignment, and all things
that are required to get a PASS are denoted in bullet points:

Beware, some things require a lot of work, but you should still only include the ffnal table or ffgure
and not all intermediary steps. If uncertain, add a sentence or two about how you reached your
conclusions, but do not add supplementary material. Only include the tables/ffgures explicitly asked
for in the bullet points.
Good Luck!
1Before uploading the code, copy-paste the project folder to a new directory and try to re-run it. Does it still work?
2Make sure the repository/link is public/working before sharing it.
3Rare exceptions can be made if required. 
4Next is the retake on December 12th, 2024.
1NEKN96
Assignment
Our goal is to put into practice the separation of population vs. sample using a linear regression
model. This hands-on approach will allow us to generate a sample from a known Population Regression
Function (PRF) and observe how breakages of the Gauss-Markov assumptions can affect our sample
estimates.
We will assume that the PRF is:
Y = α + β1X1 + β2X2 + β3X3 + ε (1)
However, to break the assumptions, we need to add:
A0: Non-linearities
A2: Heteroscedasticity
A4: Endogeneity
A7: Non-normality in a small sample
A3 autocorrelation will be covered in HWA2, time-series modelling.
Q1 - All Assumptions Fulfflled
Let’s generate a ”correct” linear regression model. Generate a PRF with the parameters:
α = 0.7, β1 = −1, β2 = 2, β3 = 0.5, ε ∼ N(0, 4), Xi
 iid∼ N(0, 1). (2)
The example code is also available in Canvas
Setup Parameters
n = 30
p = 3
beta = [-1, 2, 0.5]
alpha = 0.7
Simulate X and Y, using normally distributed errors
5
np. random . seed ( seed =96)
X = np. random . normal (loc=0, scale =1, size =(n, p))
eps = np. random . normal (loc =0, scale =2, size =n)
y = alpha + X @ beta + eps
Run the correctly speciffed linear regression model
result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
result_OLS . summary ()
ˆ Add a well-formatted summary table
ˆ Interpret the estimate of βˆ
2 and the R2
.
5
Important: The np.random.seed() will ensure that we all get the same result. In other words, ensure that we are
using the ”correct” seed and that we don’t generate anything else ”random” before this simulation.
2NEKN96
ˆ In a paragraph, discuss if the estimates are consistent with the population regression function.
Why, why not?
ˆ Re-run the model, increasing the sample size to n = 10000. In a paragraph, explain what happens
to the parameter estimates, and why doesn’t R2 get closer and closer to 1 as n increases?
Q2 - Endogeneity
What if we (wrongly) assume that the PRF is:
Y = α + β1X1 + β2X2 + ε (3)
Use the same seed and setup as in Q1, and now estimate both the ”correct” and the ”wrong” model:
result_OLS = OLS( endog =y, exog = add_constant (X)). fit ()
result_OLS . summary ()
result_OLS_endog = OLS ( endog =y, exog = add_constant (X[:,0:2 ])). fit ()
result_OLS_endog . summary ()
ˆ Shouldn’t this imply an omitted variable bias? Show mathematically why it won’t be a problem
in this speciffc setup (see lecture notes ”Part 2 - Linear Regression”).
Q3 - Non-Normality and Non-Linearity
Let’s simulate a sample of n = 3000, keeping the same parameters, but adding kurtosis and skewness
to the error terms:
6
n = 3000
X = np. random . normal (loc=0, scale =1, size =(n, p))
eps = np. random . normal (loc =0, scale =2, size =n)
eps_KU = np. sign ( eps) * eps **2
eps_SKandKU_tmp = np. where ( eps_KU > 0, eps_KU , eps_KU *2)
eps_SKandKU = eps_SKandKU_tmp - np. mean ( eps_SKandKU_tmp )
Now make the dependent variable into a non-linear relationship
y_exp = np.exp( alpha + X @ beta + eps_SKandKU )
ˆ Create three ffgures:
1. Scatterplot of y exp against x 1
2. Scatterplot of ln(y exp) against x 1
3. plt.plot(eps SKandKU)
The ffgure(s) should have a descriptive caption, and all labels and titles should be clear to the
reader.
Estimate two linear regression models:
6The manual addition of kurtosis and skewness will make E [ε] ̸= 0, so we need to remove the average from the errors
to ensure that the exogeneity assumption is still fulfflled.
3NEKN96
res_OLS_nonLinear = OLS( endog =y_exp , exog = add_constant (X)). fit ()
res_OLS_transformed = OLS ( endog =np.log ( y_exp ), exog = add_constant (X)). fit ()
ˆ Add the regression tables of the non-transformed and transformed regressions
ˆ In a paragraph, does the transformed model fft the population regression function?
Finally, re-run the simulations and transformed estimation with a small sample, n = 30
ˆ Add the regression table of the transformed small-sample estimate
ˆ Now, re-do this estimate several times
7 and observe how the parameter estimates behave. Do
the non-normal errors seem to be a problem in this spot?
Hint: Do the parameters seem centered around the population values? Do we reject H0 : βi = 0?
ˆ In a paragraph, discuss why assuming a non-normal distribution makes it hard to ffnd the
distributional form under a TRUE null hypothesis, H0 ⇒ Distribution?
Hint: Why is the central limit theorem key for most inferences?
Q4 - Heteroscedasticity
Suggest a way to create heteroscedasticity in the population regression function.
8
ˆ Write down the updated population regression function in mathematical notation
ˆ Estimate the regression function assuming homoscedasticity (as usual)
ˆ Adjust the standard errors using a Heteroscedastic Autocorrelated Consistent (HAC) estimator
(clearly state which HAC estimator you use)
ˆ Add the tables of both the unadjusted and adjusted estimates
ˆ In a paragraph, discuss if the HAC adjustment to the standard errors makes sense given the
way you created the heteroscedasticity. Did the HAC adjustment seem to ffx the problem?
Hint: Bias? Efffcient?
7Using a random seed for each estimate.
8Tip: Double-check by simulating the model and plotting the residuals against one of the regressors. Does it look
heteroscedastic?


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機打開當前頁
  • 上一篇:ITMF7.120代寫、代做Python編程設計
  • 下一篇:代做COMP 412、代寫python設計編程
  • ·CRICOS編程代做、代寫Java程序設計
  • ·MDSB22代做、代寫C++,Java程序設計
  • ·代做Electric Vehicle Adoption Tools 、代寫Java程序設計
  • ·代做INFO90001、代寫c/c++,Java程序設計
  • · COMP1711代寫、代做C++,Java程序設計
  • ·GameStonk Share Trading代做、java程序設計代寫
  • ·CSIT213代做、代寫Java程序設計
  • ·CHC5223代做、java程序設計代寫
  • ·代做INFS 2042、Java程序設計代寫
  • ·代寫CPT206、Java程序設計代做
  • 合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产精品尤物福利片在线观看| 国精产品99永久一区一区| 久久精品欧洲| 91久久在线视频| 一区二区激情视频| 狂野欧美激情性xxxx欧美| 国产视频在线一区二区| 国产亚洲欧美日韩一区二区| 欧美精品久久久久久| 好吊妞**欧美| 欧美日韩国产美| 国产精品家庭影院| 欧美一区二区三区成人| 一区二区三区日韩欧美| 国内精品视频久久| 国产欧美亚洲视频| 欧美日韩视频在线一区二区观看视频| 亚洲人成网站在线播| 亚洲一区国产一区| 狠狠色丁香婷婷综合影院| 国产精品你懂的| 欧美日韩视频专区在线播放| 国产日韩欧美视频在线| 欧美一级淫片播放口| 欧美视频亚洲视频| 欧美日韩亚洲一区在线观看| 久久国产精品99国产| 国产综合在线视频| 久久久久久久激情视频| 欧美视频日韩| 亚洲欧美成人在线| 午夜精品视频一区| 亚洲欧美另类综合偷拍| 欧美日韩亚洲精品内裤| 免费av成人在线| 欧美大片18| 一区二区三区四区五区视频| 国产丝袜美腿一区二区三区| 国产精品区免费视频| 亚洲日本黄色| 亚洲精品字幕| 精品不卡在线| 欧美激情一区三区| 欧美在线观看一区二区三区| 欧美一区亚洲一区| 亚洲电影在线| 亚洲一区二区高清视频| 亚洲麻豆视频| 亚洲亚洲精品在线观看| 欧美欧美在线| 国产乱理伦片在线观看夜一区| 篠田优中文在线播放第一区| 在线成人www免费观看视频| 午夜免费在线观看精品视频| 99re6这里只有精品| 亚洲欧美国产高清| 久久全球大尺度高清视频| 欧美日本成人| 日韩一区二区高清| 毛片基地黄久久久久久天堂| 激情综合久久| 欧美va亚洲va日韩∨a综合色| 黄色亚洲精品| 嫩草影视亚洲| 欧美一区二区高清| 国产乱码精品一区二区三区忘忧草| 国产欧美日韩精品专区| 一本色道久久综合狠狠躁的推荐| 国产日韩欧美麻豆| 麻豆freexxxx性91精品| 欧美午夜免费影院| 在线观看日韩av| 精品二区视频| 欧美香蕉大胸在线视频观看| 欧美一区二区三区四区夜夜大片| 老色鬼久久亚洲一区二区| 欧美成人精品在线观看| 欧美主播一区二区三区美女 久久精品人| 亚洲人成网在线播放| 国产精品扒开腿做爽爽爽视频| 国产亚洲精品7777| 欧美天堂在线观看| 亚洲免费在线观看视频| 一区二区在线视频观看| 亚洲午夜av| 欧美国产欧美亚洲国产日韩mv天天看完整| 免费不卡欧美自拍视频| 亚洲国产裸拍裸体视频在线观看乱了中文| 国内综合精品午夜久久资源| 欧美高清成人| 亚洲欧洲午夜| 黑人中文字幕一区二区三区| 在线视频亚洲一区| 欧美日韩一区二区三区视频| 欧美天堂亚洲电影院在线播放| 蜜月aⅴ免费一区二区三区| 亚洲国产成人精品久久| 国产精品免费一区二区三区在线观看| 久久久亚洲高清| 红杏aⅴ成人免费视频| 日韩视频在线永久播放| 国产精品一区亚洲| 午夜久久资源| 亚洲久久一区| 免费观看国产成人| 欧美国产视频日韩| 欧美三级黄美女| 午夜天堂精品久久久久| 欧美成人性生活| 国产一区视频在线观看免费| 亚洲欧美一区二区视频| 国产精品三区www17con| 国产一区再线| 国内精品**久久毛片app| 欧美一区永久视频免费观看| 久久久亚洲一区| 在线观看欧美一区| 久久欧美肥婆一二区| 欧美国产日韩一区二区三区| 久久男女视频| 99综合电影在线视频| 91久久精品久久国产性色也91| 欧美日韩一区不卡| 亚洲你懂的在线视频| 亚洲精品日本| 久久久夜色精品亚洲| 亚洲欧美视频在线观看视频| 国产精品专区第二| 欧美在线播放一区| 亚洲欧美日韩精品一区二区| 久久精品国产视频| 久久精品欧美日韩| 性色av一区二区三区红粉影视| 欧美午夜精品久久久久久人妖| 国产精品久久国产精麻豆99网站| 一区二区三区四区五区视频| 亚洲自拍都市欧美小说| 黄色国产精品一区二区三区| 欧美阿v一级看视频| 亚洲欧美变态国产另类| 悠悠资源网亚洲青| 亚洲国产高潮在线观看| 欧美精品成人91久久久久久久| 欧美三区美女| 久久久久久久综合狠狠综合| 午夜欧美大尺度福利影院在线看| 国产婷婷色一区二区三区| 欧美日韩国产综合视频在线观看中文| 欧美三级黄美女| 亚洲综合精品| 欧美不卡激情三级在线观看| 国产精品久久久久aaaa| 欧美人与性动交α欧美精品济南到| 欧美国产视频在线观看| 久久久久久久国产| 亚洲图片欧洲图片av| 欧美精品一区二区三区在线播放| 久久九九有精品国产23| 亚洲欧美日本视频在线观看| 日韩亚洲欧美一区二区三区| 亚洲一级在线| 韩日在线一区| 国产目拍亚洲精品99久久精品| 国产精品高清免费在线观看|