日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP2051代做、代寫C/C++,Python編程

時間:2024-04-11  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 1
Artificial Intelligence Methods (COMP2051 or AE2AIM)
Prof. Ruibin Bai Spring 2024
Coursework: Perturbative hyper-heuristic for Bin Packing Problem
1. Introduction
Bin packing is one of the most studied combinatorial optimisation problems and has
applications in logistics, space planning, production, cloud computing, etc. Bin packing is
proven to be NP-Hard and the actual difficulties depend on both the size of the problem (i.e.
the total number of items to be packed) and other factors like the distribution of item sizes in
relation to the bin size as well as the number of distinct item sizes (different items may have a
same size).
In this coursework, you are asked to write a C/C++/Python program to solve this problem
using a perturbative hyper-heuristic method. In addition to submitting source code, a
written report (no more than 2000 words and 6 pages) is required to describe your algorithm
(see Section 4 for detailed requirements). Both your program and report must be completed
independently by yourself. The submitted documents must successfully pass a plagiarism
checker before they can be marked. Once a plagiarism case is established, the academic
misconduct policies shall be applied strictly.
This coursework carries 45% of the module marks.
2. Bin Packing Problem (BPP)
Given a set of n items, each item j has a size of aj, BPP aims to pack all items in the
minimum number of identical sized bins without violating the capacity of bins (V). The
problem can be mathematically formulated as follow:
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 2
This mathematical formulation is generally NOT solvable by existing integer programming
solvers like CPlex, Gurobi, LPSolve, especially when the number of items n is large. The
solution space of bin packing problem is characterised by its huge size and plateau-like that
makes it very challenging for traditional neighbourhood search methods. In order to
consistently solve the problem with good quality solutions, metaheuristics and hyperheuristics are used, which is the task of this coursework.
3. Problem instances
Over the years, a large number of BPP instances have been introduced by various research.
See https://www.euro-online.org/websites/esicup/data-sets/ for a collection of different bin
packing problem. In this coursework, we shall provide 3 instances files (binpack1.txt,
binpack3.txt and binpack11.txt), respectively representing easy, medium and hard instances.
From which 10 instances shall be selected for testing and evaluation of your algorithm in
marking. For each test instance, only 1 run is executed, and its objective value is used for
marking the performance component (see Section 5).
4. Experiments conditions and submission requirements
The following requirements should be satisfied by your program:
(1) You are required to submit two files exactly. The first file should contain all your
program source codes. The second file is a coursework report. Please do NOT
compress the files.
(2) Your source code should adopt a clean structure and be properly commented.
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 3
(3) Your report should include the followings:
• The main components of the algorithm, including solution encoding, fitness
function, list of low-level heuristics as well as considerations regarding the
intensification and diversification mechanisms. (12 marks).
• Statistical results (avg, best, worst of 5 runs) of the algorithm for all the problem
instances, in comparison with the best published results (i.e. the absolute gap to
the best results). Note that although your report should include results for 5 runs
but your final submission should only have one single run for each instance (i.e.
if you use the sketch code from the lab, set global variable NUM_OF_RUNS=1
before you submit the code). (3 marks)
• A short discussion/reflection on results and performance of the algorithm. (5
marks)
(4) Name your program file after your student id. For example, if your student number
is 2019560, name your program as 2019560.c (or 2019560.cpp, or 2019560.py).
(5) Your program should compile and run without errors on either CSLinux Server or a
computer in the IAMET**. Therefore, please fully tested before submission. You
may use one of the following commands (assuming your student id is 2019560 and
your program is named after your id):
 gcc -std=c99 -lm 2019560.c -o 2019560
or
 g++ -std=c++11 -lm 2019560.cpp -o 2019560
For Python programs, this second can be skipped.
(6) After compilation, your program should be executable using the following
command:
 ./2019560 -s data_fle -o solution_file -t max_time
where 2019560 is the executable file of your program, data_file is one of
problem instance files specified in Section 3. max_time is the maximum time
permitted for a single run of your algorithm. In this coursework, maximum of 30
seconds is permitted. soluton_file is the file for output the best solutions by
your algorithm. The format should be as follows:
# of problems
Instance_id1
obj= objective_value abs_gap
item_indx in bin0
item_indx in bin1
… …
Instance_id2
obj= objective_value abs_gap
item_indx in bin0
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 4
item_indx in bin1
… …
An example solution file for problem data file “binpack1.txt” is available on
moodle.
For submissions using Python, the compilation and running are combined in one
command as follows:
 python 2019560.py -s data_fle -o solution_file -t max_time
(7) The solution file output in (6) by your algorithm (solution_file) is expected to
pass a solution checking test successfully using the following command on
CSLInux:
 ./bpp_checker -s problem_file -c solution_file
where problem_file is one of problem data files in Section 3. If your solution file
format is correct, you should get a command line message similar to: “Your total score
out of 20 instances is: 80." If the solutions are infeasible for some instances, you would
get error messages.
The solution checker can be downloaded from moodle page. It is runnable only on
CSLinux.
(8) Your algorithm should run only ONCE for each problem instance and each run
should take no more than 30 seconds.
(9) Please carefully check the memory management in your program and test your
algorithm with a full run on CSLinux (i.e. running multiple instances in one go). In
the past, some submitted programs can run for **2 instances but then crashed
because of out-of-memory error. This, if happens, will greatly affect your score.
(10) You must strictly follow policies and regulations related to Plagiarism. You are
prohibited from using recent AI tools like ChatGPT/GPT-4 or other similar large
language models (LLMs). Once a case is established, it will be treated as a
plagiarism case and relevant policies and penalties shall be applied.
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.0 5
5. Marking criteria
• The quality of the experimental results (20 marks). Your algorithm shall be tested for
a file containing 10 instances chosen from the provided set of instances. The
performance of your algorithm is evaluated by computing the absolute gap with the
best known results using
   _    =     _       _          −     _     _         
Criteria Mark
abs_gap < 0 New best results! Bonus: 2 extra marks for
each new best result.
abs_gap <= 0 2 marks per instance
0<abs_gap <=1 1.5 marks per instance
1<abs_gap<=2 1 mark per instance
2< abs_gap <=3 0.5 mark per instance
• abs_gap >4 or
• infeasible solution or
• fail to output solution
within required time limit
0 mark
• The quality of codes, including organisation of the functions/methods, naming
conventions and clarity and succinctness of the comments (5 marks)
• Report (20 marks)
6. Submission deadline
3rd May 2024, 4pm Beijing Time
 Standard penalties are applied for late submissions.
7. How to submit
Submit via Moodle.
8. Practical Hints
• Solution encoding for bin packing is slightly more challenging compared with
knapsack program because both the number of bins to be used and the number of
items to be packed in each bin are parts of decisions to be optimised. Therefore, the
Artificial Intelligence Methods (COMP2051 or AE2AIM) Coursework Ver1.**
data structure that is used to hold the packing information cannot be implemented via
fixed-size arrays. You may consider to use vector from C++ STL (standard template
library) which requires you to include <vector.h> as header file. If you prefer C style
without classes, the following data type would be also acceptable:
struct bin_struct {
 std::vector<item_struct> packed_items;
 int cap_left;
};
struct solution_struct {
 struct problem_struct* prob; //maintain a shallow copy of problem data
 float objective;
 int feasibility; //indicate the feasibility of the solution
 std::vector<bin_struct> bins;
};
In this way, you could open/close bins and at the same time to add/remove items for a
specific bin through API functions provided by the vector library.
• The search space of bin packing problem has a lot of plateaus that make the problem
extremely difficult for simple neighbourhood methods. Therefore, multiple low-level
heuristics are suggested within a perturbative hyper-heuristic method. You are free to
select any of the perturbative hyper-heuristic methods described in
(https://link.springer.com/article/10.1007/s10288-01**0182-8), as well as some of the
more recent ones
(https://www.sciencedirect.com/science/article/pii/S0377221719306526).
• Your algorithm must be runnable on CSLinux and/or computers on IAMET**.
Therefore, you are not permitted to use external libraries designed specifically for
optimisation. 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:越南駕駛證簽證辦理(越南駕照的有效期)
  • 下一篇:FIT1047代做、Python/c++程序語言代寫
  • ·代做SWEN20003、代寫C/C++,python編程語
  • ·QBUS6820代做、Python編程語言代寫
  • ·代寫CMSE11475、代做Java/Python編程
  • ·代寫CPSC 217、代做python編程設計
  • ·代寫CMSC 323、代做Java/Python編程
  • ·CMSC 323代做、代寫Java, Python編程
  • ·CS170程序代做、Python編程設計代寫
  • ·COM3524代做、代寫Java,Python編程設計
  • · Root finding part代做、代寫c++,Python編程語言
  • ·代寫ECS 120、代做Java/Python編程設計
  • 合肥生活資訊

    合肥圖文信息
    釘釘簽到打卡位置修改神器,2026怎么修改定位在范圍內
    釘釘簽到打卡位置修改神器,2026怎么修改定
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
  • 短信驗證碼 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产亚洲激情| 亚洲一区二区三区乱码aⅴ| 国产一区二区高清不卡| 宅男66日本亚洲欧美视频| 亚洲一区二区不卡免费| 一本色道久久88综合亚洲精品ⅰ| 亚洲人成在线免费观看| 日韩亚洲一区二区| 亚洲第一精品久久忘忧草社区| 欧美日韩亚洲不卡| 国产一区二区精品久久| 国产视频一区在线| 欧美一区午夜视频在线观看| 亚洲一区欧美一区| 亚洲欧洲日产国产网站| 亚洲第一精品电影| 夜夜嗨一区二区| 国产精品久久久久久久久久妞妞| 亚洲欧美日本国产有色| 欧美精品日韩综合在线| 亚洲在线黄色| 中文高清一区| 久久精品观看| 欧美一区日韩一区| 国产精品男gay被猛男狂揉视频| 亚洲大片免费看| 国产色综合久久| 亚洲乱码久久| 日韩视频一区二区在线观看| 久久久无码精品亚洲日韩按摩| 日韩亚洲成人av在线| 国产精品美女久久久久aⅴ国产馆| 亚洲三级电影在线观看| 在线不卡中文字幕| 国产午夜精品在线观看| 亚洲丝袜av一区| 亚洲欧美国产视频| 国产午夜精品久久久久久免费视| 欧美日韩另类一区| 欧美伦理一区二区| 麻豆91精品91久久久的内涵| 一本色道久久综合亚洲精品小说| 久久精品主播| 亚洲国产精品国自产拍av秋霞| 日韩午夜精品| 亚洲视频在线二区| 国产综合久久久久久鬼色| 亚洲欧美一区二区激情| 免费观看30秒视频久久| 欧美激情无毛| 国产视频一区欧美| 久久精品91久久香蕉加勒比| 欧美日韩亚洲综合一区| 国产一区二区三区视频在线观看| 久久一二三国产| 欧美视频观看一区| 久久在线免费| 久久成人资源| 欧美手机在线视频| 亚洲国产欧美一区二区三区丁香婷| 欧美日韩成人一区二区| 国产精品成人观看视频国产奇米| 国产精品亚洲第一区在线暖暖韩国| 一区二区三区四区五区精品| 免费亚洲电影在线观看| 亚洲人成人一区二区三区| 亚洲一区二区高清视频| 久久gogo国模裸体人体| 久久久蜜臀国产一区二区| 亚洲免费黄色| 国产精品国码视频| 欧美激情一区二区三区蜜桃视频| 99精品黄色片免费大全| 99国内精品| 欧美电影免费观看高清| 蜜桃av噜噜一区二区三区| 国产一区二区精品| 激情文学一区| 午夜精品久久久久99热蜜桃导演| 麻豆成人在线播放| 日韩视频永久免费| 亚洲欧美一区二区激情| 亚洲精品一区二区三区在线观看| 欧美日韩一区在线观看视频| 狠狠狠色丁香婷婷综合久久五月| 欧美精品三区| 在线精品国精品国产尤物884a| 国产精品v日韩精品| 免费亚洲一区二区| 国产欧美精品一区二区色综合| 久久av一区二区三区漫画| 亚洲精品国产精品国自产观看浪潮| 久久精品中文字幕一区二区三区| 国产精品久在线观看| 亚洲精品美女在线观看| 国产精品高潮粉嫩av| 欧美性大战久久久久久久| 久久成人国产| 欧美日韩国产在线播放网站| 一本色道久久综合亚洲二区三区| 久久久免费av| 欧美三级特黄| 欧美日本中文| 亚洲国产日韩一区二区| 国产自产高清不卡| 国产欧美一区二区三区久久人妖| 亚洲在线视频一区| 欧美在线日韩在线| 亚洲自拍啪啪| 欧美成人dvd在线视频| 欧美肥婆在线| 亚洲高清av在线| 久久久久久一区二区三区| 久久午夜国产精品| 国产欧美日韩伦理| 亚洲精品日韩一| 欧美性色视频在线| 亚洲久久一区| 欧美高清在线| 9久草视频在线视频精品| 欧美丝袜一区二区三区| 麻豆国产va免费精品高清在线| 国产亚洲精品激情久久| 久久午夜羞羞影院免费观看| 欧美一区二视频在线免费观看| 欧美一区二区久久久| 国产亚洲成年网址在线观看| 亚洲乱码精品一二三四区日韩在线| 在线一区免费观看| 欧美视频精品一区| 欧美一区二区三区精品电影| 国产精品最新自拍| 欧美视频在线视频| 亚洲女爱视频在线| 亚洲美女av网站| 欧美aⅴ一区二区三区视频| 国产日韩一区二区三区在线播放| 国产精品一区视频| 亚洲激情国产| 国产亚洲成av人在线观看导航| 欧美经典一区二区三区| 亚洲欧美综合v| 国产综合av| 国产日韩精品在线观看| 久久视频国产精品免费视频在线| 亚洲四色影视在线观看| 亚洲三级电影在线观看| 欧美成人午夜免费视在线看片| 国产免费成人在线视频| 国产精品热久久久久夜色精品三区| 久久精品成人一区二区三区| 欧美在线观看一区二区| 久久一日本道色综合久久| 一本久道久久综合狠狠爱| 久久综合久久88| 一本一本久久a久久精品综合妖精| 国产最新精品精品你懂的| 欧美亚洲一区三区| 亚洲乱码国产乱码精品精天堂| 女同一区二区| 久久久99精品免费观看不卡| 欧美三级在线播放| 欧美日韩小视频| 亚洲免费观看高清完整版在线观看熊|