<em id="rw4ev"></em>

      <tr id="rw4ev"></tr>

      <nav id="rw4ev"></nav>
      <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
      合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

      COM3524代做、代寫Java,Python編程設計

      時間:2024-02-06  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



       COM**4 Bio-inspired Computing

      Lecture 7a Introduction to Simulation

       Objectives of Lecture 7a-c

      1. Tointroducetheconceptofapredictive, mechanistic model

      2. Tointroducetwoalternativeapproachesto modelling in the context of understanding population dynamics:

       Equation-based Modelling

       Individual (agent-based) Modelling

      3. Topresenttheadvantages/disadvantagesofeach of these approaches.

       Bi-directional process

      SCIENCE

      ENGINEERING

       Bio-inspired computing

        Pallavi Deshpande

       Computational exploration of real-world systems

      Biological Physical ?Social Financial ?Artificial Intelligence

      Engineered hardware Algorithms

      Software protection systems

       What is a model?

      Means different things to different people

      Method for structuring and validating

      knowledge

        “ All models are wrong, but some models are useful”

      Box, G.E.P., Robustness in the strategy of scientific model building, In Robustness in Statistics, R.L. Launer and G.N. Wilkinson, Editors.

       Data driven models

       Aim to derive knowledge from large datasets

       Use statistics or machine learning methods to find a

      relationship between inputs and outputs

       Allows us to ask questions like “given a data set A,

      what is the probability of outcome B?”

       Does not attempt to consider details of mechanisms

       “Top down” approach
       Mechanistic Models

       Starts from known or assumed mechanism and attempts to predict results (simulation)

       Many approaches (ODEs, finite element, agent-based....)

       Allows us to explore “what if?” scenarios

       “Bottom up” approach

       What do you notice about the populations of hares and lynxes?

      Can you explain why this occurs?

      Can a mathematical/ computational model simulate this ?

      https://www.youtube.com/watch?v=swiSMSWgbKE

      Population Models

       A Simple Population Model

       Considerapopulationofself-replicatingaggressiveorganisms that live in a space of fixed size.

       Weareinterestedinknowinghowthesizeofthepopulation changes from day to day.

       Let the population number on day t be N(t). This is our model variable.

       Considertwoprocessesthatcontributetochangesinthe population size: birth and death.

       A Simple Population Model

      General form of the model is

      N(t+1) = N(t) + number of births – number of deaths

      Assumptions:

      - population is large enough that we can approximate N(t), which is an integer, by a real number n(t).

      - number of births per day is proportional to population size

      (self-replicating organisms). where B is the birth rate (a model parameter).

      - number of births = Bn(t),

       A Simple Population Model
       Assume there are two processes contributing to the death rate:

      - organisms die naturally, at a rate proportional to the population size n(t)

      - when organisms meet, they fight to the the death, and there is always a clear victor (one death per encounter).

      Assume chance of meeting is proportional to square of the population density, which is proportional to n(t)2 (since they live in a space of fixed area).

       Hence

      death rate = D0 n(t) + D n(t)2,

      where

      D0 is the natural death rate ;

      D depends on the area of the space in which the organisms live D0 , D are parameters (constants).

       A Simple Population Model

      Putting all this together, we obtain the model:

      n(t+1) = n(t) + Bn(t) – D0n(t) – Dn(t)2

      Or, more generally:

      n(t+1) = f(n(t); B, D0, D)

         model VARIABLE

      model PARAMETERS

       A Simple Population Model

      This illustrates some important points:

      1. We have made a number of simplifying assumptions in order to formulate the model.

      2. We have identified what we believe to be the relevant processes that underlie the change in the population.

      3. We have used parameters to encode the details of those processes. Even if we don’t know those details, we can study the outcome of the model for different values of those parameters.

       What can we do with this model ?

      n(t+1) = n(t) + Bn(t) – D0n(t) – Dn(t)2

      We might want to use this to find out what the population n(t) will be on each day of the next week, given that we measure the population to be 500 on day 1.

       We can specify values for the parameters and use the above formula iteratively to evaluate the population each day. This is simulation (synthesis).

       Alternatively, we can use the mathematical expression above to deduce some general properties of the system. This is called analysis.

       NEXT: Lecture 7b) Analysis and Synthesis for an equation-based model
      如有需要,請加QQ:99515681 或WX:codehelp

      掃一掃在手機打開當前頁
    1. 上一篇:代做CSC477、代寫Python,C++設計編程
    2. 下一篇:代做Micro Language Compiler
    3. 無相關信息
      合肥生活資訊

      合肥圖文信息
      挖掘機濾芯提升發動機性能
      挖掘機濾芯提升發動機性能
      戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
      戴納斯帝壁掛爐全國售后服務電話24小時官網
      菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
      菲斯曼壁掛爐全國統一400售后維修服務電話2
      美的熱水器售后服務技術咨詢電話全國24小時客服熱線
      美的熱水器售后服務技術咨詢電話全國24小時
      海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
      海信羅馬假日洗衣機亮相AWE 復古美學與現代
      合肥機場巴士4號線
      合肥機場巴士4號線
      合肥機場巴士3號線
      合肥機場巴士3號線
      合肥機場巴士2號線
      合肥機場巴士2號線
    4. 幣安app官網下載 短信驗證碼 丁香花影院

      關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

      Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
      ICP備06013414號-3 公安備 42010502001045

      成人久久18免费网站入口