日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MATH3030、代做c/c++,Java程序
代寫MATH3030、代做c/c++,Java程序

時間:2025-03-22  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MATH3030: Coursework, Spring 2025
17/03/2025
• If you are a MATH4068 student, please stop reading and go and find the coursework for
MATH4068. This assessment is for MATH3030 students only.
• This coursework is ASSESSED and is worth 20% of the total module mark. It is split into two questions,
of equal weight.
• Deadline: Coursework should be submitted via the coursework submission area on the Moodle page
by Wednesday 30 April, 10am.
• Do not spend more time on this project than it merits - it is only worth 20% of the module mark.
• Format: Please submit a single pdf document. The easiest way to do this is to use R Markdown or
Quarto in R Studio. Do not submit raw markdown or R code - raw code (i.e. with no output,
plots, analysis etc) will receive a mark of 0.
• As this work is assessed, your submission must be entirely your own work (see the University’s policy
on Academic Misconduct).
• Submissions up to five working days late will be subject to a penalty of 5% of the maximum mark
per working day. Deadline extensions due to Support Plans and Extenuating Circumstances can be
requested according to School and University policies, as applicable to this module. Because of these
policies, solutions (where appropriate) and feedback cannot normally be released earlier than 10 working
days after the main cohort submission deadline.
• Report length: Your solution should not be too long. You should aim to convey the important
details in a way that is easy to follow, but not excessively long. Avoid repetition and long print-outs of
uninteresting numerical output.
• Please post any questions about the coursework on the Moodle discussion boards. This will ensure that
all students receive the same level of support. Please be careful not to ask anything on the discussion
boards that reveals any part of your solution to other students.
• I will be available to discuss the coursework at our Tuesday or Thursday sessions during the semester. I
will not be meeting students 1-1 to discuss the coursework outside of these times.
Plagiarism and Academic Misconduct For all assessed coursework it is important that you submit
your own work. Some information about plagiarism is given on the Moodle webpage.
Grading The two questions carry equal weight, and both will be marked out of 10. You will be assessed on
both the technical content (use of R, appropriate choice of method) and on the presentation and interpretation
of your results.
1
Coursework
The file UN.csv is available on Moodle, and contains data from the United Nations about 141 different
countries from 1952 to 2007. This includes the GDP per capita, the life expectancy, and the population.
Load the data into R, and extract the three different types of measurement using the commands below:
UN <- read.csv('UN.csv')
gdp <- UN[,3:14] # The GDP per capita.
years <- seq(1952, 2007,5)
colnames(gdp) <- years
rownames(gdp) <- UN[,2]
lifeExp <- UN[,15:26] # the life expectancy
colnames(lifeExp) <- years
rownames(lifeExp) <- UN[,2]
popn <- UN[,27:38] # the population size
colnames(popn) <- years
rownames(popn) <- UN[,2]
In this project, you will analyse these data using the methods we have looked at during the module.
Question 1
Exploratory data analysis
Begin by creating some basic exploratory data analysis plots, showing how the three variables (GDP, life
expectancy, population) have changed over the past 70 years. For example, you could show should how the
average life expectancy and GDP per capita for each continent has changed through time. Note that there
are many different things you could try - please pick a small number of plots which you think are most
informative.
Principal component analysis
Carry out principal component analysis of the GDP and life expectancy data. Analyse the two variable types
independently (i.e. do PCA on GDP, then on life-expectancy). Things to consider include whether you use
the sample covariance or correlation matrix, how many principal components you would choose to retain in
your analysis, and interpretation of the leading principal components.
Use your analysis to produce scatter plots of the PC scores for GDP and life expectancy, labelling the names
of the countries and colouring the data points by continent. You can also plot the first PC score for life
expectancy against the first PC score for GDP (again colouring and labelling your plot). Briefly discuss these
plots, explaining what they illustrate for particular countries.
Canonical correlation analysis
Perform CCA using log(GDP) and life expectancy as the two sets of variables. Provide a scatter plot of the
first pair of CC variables, labelling and colouring the points. What do you conclude from your canonical
correlation analysis? What has been the effect of using log(gdp) rather than gdp as used in the PCA?
Multidimensional scaling
Perform multidimensional scaling using the combined dataset of log(GDP), life expectancy, and log(popn),
i.e., using
UN.transformed <- cbind(log(UN[,3:14]), UN[,15:26], log(UN[,27:38]))
Find and plot a 2-dimensional representation of the data. As before, colour each data point by the continent
it is on. Discuss the story told by this plot in comparison with what you have found previously.
2
Question 2
Linear discriminant analysis
Use linear discriminant analysis to train a classifier to predict the continent of each country using gdp,
lifeExp, and popn from 1952-2007. Test the accuracy of your model by randomly splitting the data into test
and training sets, and calculate the predictive accuracy on the test set.
Clustering
Apply a selection of clustering methods to the GDP and life expectancy data. Choose an appropriate number
of clusters using a suitable method, and discuss your results. For example, do different methods find similar
clusters, is there a natural interpretation for the clusters etc? Note that you might want to consider scaling
the data before applying any method.
UN.scaled <- UN[,1:26]
UN.scaled[,3:26] <- scale(UN[,3:26])
Linear regression
Finally, we will look at whether the life expectancy in 2007 for each country can be predicted by a country’s
GDP over the previous 55 years. Build a model to predict the life expectancy of a country in 2007 from its
GDP values (or from log(gdp)). Explain your choice of regression method, and assess its accuracy. You
may want to compare several different regression methods, and assess whether it is better to use the raw gdp
values or log(gdp) as the predictors.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:CSC3050代做、Java/Python編程代寫
  • 下一篇:悠悠分期全國客服電話-悠悠分期24小時人工服務熱線
  • ·COMP 5076代寫、代做Python/Java程序
  • ·代寫COP3503、代做Java程序設計
  • ·COMP3340代做、代寫Python/Java程序
  • ·COM1008代做、代寫Java程序設計
  • ·MATH1053代做、Python/Java程序設計代寫
  • ·CS209A代做、Java程序設計代寫
  • ·ITC228編程代寫、代做Java程序語言
  • ·PROG2004代做、Java程序設計代寫
  • ·代寫Tic-Tac-To: Markov Decision、代做java程序語言
  • ·CP1407代做、代寫c/c++,Java程序
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美一区二区三区日韩视频| 亚洲精品久久久久久久久久久久久| 99国内精品| 久久一区二区三区四区五区| 欧美精品国产| 日韩亚洲精品视频| 欧美日韩国产大片| 亚洲无亚洲人成网站77777| 亚洲日本黄色| 国产欧美日韩精品在线| 亚洲国产99精品国自产| 久久国产精品一区二区三区四区| 99pao成人国产永久免费视频| 欧美黄色免费网站| 卡一卡二国产精品| 国产精品无码永久免费888| 欧美一区二区精品| 国产在线视频欧美一区二区三区| 亚洲免费视频一区二区| 欧美成人亚洲成人日韩成人| 国产乱理伦片在线观看夜一区| 国产精品美女久久久| 久久先锋影音av| 久久精品道一区二区三区| 国产精品夫妻自拍| 欧美日韩一区二区三区在线看| 最近看过的日韩成人| 欧美fxxxxxx另类| 国产亚洲精品aa午夜观看| 欧美区一区二| 一区二区高清视频| 欧美一区二区视频免费观看| 久久爱另类一区二区小说| 国产精品你懂的在线| 欧美日韩亚洲高清一区二区| 亚洲欧美成人一区二区三区| 亚洲精品乱码久久久久久按摩观| 一区三区视频| 亚洲最新视频在线播放| 欧美精品免费在线观看| 麻豆精品视频在线观看| 精品成人乱色一区二区| 午夜一区二区三区不卡视频| 久久精品免费电影| 99视频超级精品| 久久经典综合| 欧美日韩精品| 久久亚洲一区二区三区四区| 国内精品久久久久国产盗摄免费观看完整版| 国产欧美一区二区三区国产幕精品| 在线播放国产一区中文字幕剧情欧美| 亚洲欧美日韩成人高清在线一区| 国产一区二区三区av电影| 欧美一区久久| 欧美在线播放一区| 亚洲精品日韩激情在线电影| 久久久久久9| 在线观看三级视频欧美| 久久综合成人精品亚洲另类欧美| 亚洲精品系列| 亚洲日本免费电影| 国产美女高潮久久白浆| 亚洲欧美高清| 在线视频一区二区| 国外成人在线视频| 欧美二区视频| 亚洲永久精品大片| 国产亚洲欧美色| 亚洲福利视频一区二区| 欧美一区二区三区免费大片| 欧美中文字幕视频在线观看| 鲁大师影院一区二区三区| 欧美日韩精品三区| 欧美亚洲第一区| 欧美日韩中字| 在线观看亚洲视频啊啊啊啊| 久热综合在线亚洲精品| 欧美高清在线视频观看不卡| 欧美gay视频| 亚洲精品在线二区| 久久免费视频网站| 尤物精品国产第一福利三区| 亚洲欧美日韩人成在线播放| 亚洲高清精品中出| 欧美日韩一区二区在线视频| 午夜精品福利一区二区蜜股av| 久久天天狠狠| 国产裸体写真av一区二区| 欧美一区二区三区免费视频| 欧美人与禽性xxxxx杂性| 午夜久久一区| 亚洲精品资源| 国产热re99久久6国产精品| 99国产精品久久久久久久| 国产精品va在线播放我和闺蜜| 国产精品r级在线| 亚洲永久免费av| 欧美日韩免费一区二区三区视频| 国产欧美三级| 久久久国产精彩视频美女艺术照福利| 国产日本欧美一区二区| 久久婷婷久久一区二区三区| 欧美96在线丨欧| 国产精品av久久久久久麻豆网| 亚洲午夜精品17c| 中文国产亚洲喷潮| 国产精品无码永久免费888| 老司机免费视频久久| 韩国精品久久久999| 欧美激情一区在线| 国内精品美女av在线播放| 日韩视频一区二区三区| 国产在线拍偷自揄拍精品| 欧美一区二区三区四区在线| 欧美色网在线| 欧美日韩国产二区| 亚洲欧洲另类国产综合| 久久婷婷色综合| 国产精品高潮呻吟视频| 一区二区三区国产在线| 欧美在线播放高清精品| 国产午夜精品一区二区三区欧美| 欧美国产第一页| 欧美综合国产| 国内一区二区在线视频观看| 国产一区二区三区免费观看| 亚洲第一精品夜夜躁人人爽| 欧美日韩国产精品| 久久色在线观看| 欧美国产精品人人做人人爱| 另类图片综合电影| 国产一区日韩二区欧美三区| 欧美日韩综合视频网址| 国产精品高潮呻吟久久av黑人| 亚洲欧美日韩综合一区| 亚洲高清电影| 欧美精品大片| 国产午夜精品全部视频播放| 亚洲国产一区二区三区青草影视| 国产精品高潮粉嫩av| 国产一区二区视频在线观看| 在线欧美福利| 亚洲第一精品影视| 亚洲欧美资源在线| 西西人体一区二区| 国产自产v一区二区三区c| 亚洲一区999| 久久久亚洲人| 麻豆精品一区二区av白丝在线| 久久精品国产欧美亚洲人人爽| 欧美一区三区三区高中清蜜桃| 一区二区国产在线观看| 亚洲青色在线| 亚洲福利在线视频| 久热国产精品| 国产精品美女久久久久久久| 欧美成人精精品一区二区频| 午夜精品久久久久久久蜜桃app| 亚洲高清在线精品| 欧美aⅴ99久久黑人专区| 99精品国产在热久久婷婷| 国产欧美日韩视频一区二区| 亚洲一区二区三区国产| 一区二区久久久久久|