日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MATH3030、代做c/c++,Java程序
代寫MATH3030、代做c/c++,Java程序

時間:2025-03-22  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MATH3030: Coursework, Spring 2025
17/03/2025
• If you are a MATH4068 student, please stop reading and go and find the coursework for
MATH4068. This assessment is for MATH3030 students only.
• This coursework is ASSESSED and is worth 20% of the total module mark. It is split into two questions,
of equal weight.
• Deadline: Coursework should be submitted via the coursework submission area on the Moodle page
by Wednesday 30 April, 10am.
• Do not spend more time on this project than it merits - it is only worth 20% of the module mark.
• Format: Please submit a single pdf document. The easiest way to do this is to use R Markdown or
Quarto in R Studio. Do not submit raw markdown or R code - raw code (i.e. with no output,
plots, analysis etc) will receive a mark of 0.
• As this work is assessed, your submission must be entirely your own work (see the University’s policy
on Academic Misconduct).
• Submissions up to five working days late will be subject to a penalty of 5% of the maximum mark
per working day. Deadline extensions due to Support Plans and Extenuating Circumstances can be
requested according to School and University policies, as applicable to this module. Because of these
policies, solutions (where appropriate) and feedback cannot normally be released earlier than 10 working
days after the main cohort submission deadline.
• Report length: Your solution should not be too long. You should aim to convey the important
details in a way that is easy to follow, but not excessively long. Avoid repetition and long print-outs of
uninteresting numerical output.
• Please post any questions about the coursework on the Moodle discussion boards. This will ensure that
all students receive the same level of support. Please be careful not to ask anything on the discussion
boards that reveals any part of your solution to other students.
• I will be available to discuss the coursework at our Tuesday or Thursday sessions during the semester. I
will not be meeting students 1-1 to discuss the coursework outside of these times.
Plagiarism and Academic Misconduct For all assessed coursework it is important that you submit
your own work. Some information about plagiarism is given on the Moodle webpage.
Grading The two questions carry equal weight, and both will be marked out of 10. You will be assessed on
both the technical content (use of R, appropriate choice of method) and on the presentation and interpretation
of your results.
1
Coursework
The file UN.csv is available on Moodle, and contains data from the United Nations about 141 different
countries from 1952 to 2007. This includes the GDP per capita, the life expectancy, and the population.
Load the data into R, and extract the three different types of measurement using the commands below:
UN <- read.csv('UN.csv')
gdp <- UN[,3:14] # The GDP per capita.
years <- seq(1952, 2007,5)
colnames(gdp) <- years
rownames(gdp) <- UN[,2]
lifeExp <- UN[,15:26] # the life expectancy
colnames(lifeExp) <- years
rownames(lifeExp) <- UN[,2]
popn <- UN[,27:38] # the population size
colnames(popn) <- years
rownames(popn) <- UN[,2]
In this project, you will analyse these data using the methods we have looked at during the module.
Question 1
Exploratory data analysis
Begin by creating some basic exploratory data analysis plots, showing how the three variables (GDP, life
expectancy, population) have changed over the past 70 years. For example, you could show should how the
average life expectancy and GDP per capita for each continent has changed through time. Note that there
are many different things you could try - please pick a small number of plots which you think are most
informative.
Principal component analysis
Carry out principal component analysis of the GDP and life expectancy data. Analyse the two variable types
independently (i.e. do PCA on GDP, then on life-expectancy). Things to consider include whether you use
the sample covariance or correlation matrix, how many principal components you would choose to retain in
your analysis, and interpretation of the leading principal components.
Use your analysis to produce scatter plots of the PC scores for GDP and life expectancy, labelling the names
of the countries and colouring the data points by continent. You can also plot the first PC score for life
expectancy against the first PC score for GDP (again colouring and labelling your plot). Briefly discuss these
plots, explaining what they illustrate for particular countries.
Canonical correlation analysis
Perform CCA using log(GDP) and life expectancy as the two sets of variables. Provide a scatter plot of the
first pair of CC variables, labelling and colouring the points. What do you conclude from your canonical
correlation analysis? What has been the effect of using log(gdp) rather than gdp as used in the PCA?
Multidimensional scaling
Perform multidimensional scaling using the combined dataset of log(GDP), life expectancy, and log(popn),
i.e., using
UN.transformed <- cbind(log(UN[,3:14]), UN[,15:26], log(UN[,27:38]))
Find and plot a 2-dimensional representation of the data. As before, colour each data point by the continent
it is on. Discuss the story told by this plot in comparison with what you have found previously.
2
Question 2
Linear discriminant analysis
Use linear discriminant analysis to train a classifier to predict the continent of each country using gdp,
lifeExp, and popn from 1952-2007. Test the accuracy of your model by randomly splitting the data into test
and training sets, and calculate the predictive accuracy on the test set.
Clustering
Apply a selection of clustering methods to the GDP and life expectancy data. Choose an appropriate number
of clusters using a suitable method, and discuss your results. For example, do different methods find similar
clusters, is there a natural interpretation for the clusters etc? Note that you might want to consider scaling
the data before applying any method.
UN.scaled <- UN[,1:26]
UN.scaled[,3:26] <- scale(UN[,3:26])
Linear regression
Finally, we will look at whether the life expectancy in 2007 for each country can be predicted by a country’s
GDP over the previous 55 years. Build a model to predict the life expectancy of a country in 2007 from its
GDP values (or from log(gdp)). Explain your choice of regression method, and assess its accuracy. You
may want to compare several different regression methods, and assess whether it is better to use the raw gdp
values or log(gdp) as the predictors.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:CSC3050代做、Java/Python編程代寫
  • 下一篇:悠悠分期全國客服電話-悠悠分期24小時人工服務熱線
  • ·COMP 5076代寫、代做Python/Java程序
  • ·代寫COP3503、代做Java程序設計
  • ·COMP3340代做、代寫Python/Java程序
  • ·COM1008代做、代寫Java程序設計
  • ·MATH1053代做、Python/Java程序設計代寫
  • ·CS209A代做、Java程序設計代寫
  • ·ITC228編程代寫、代做Java程序語言
  • ·PROG2004代做、Java程序設計代寫
  • ·代寫Tic-Tac-To: Markov Decision、代做java程序語言
  • ·CP1407代做、代寫c/c++,Java程序
  • 合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲免费网址| 国产亚洲美州欧州综合国| 欧美日韩亚洲一区二| 欧美日韩高清一区| 久久久999国产| 亚洲一级黄色| 欧美日韩一区二区欧美激情| 国产丝袜一区二区三区| 国产精品久久久久av| 美女黄毛**国产精品啪啪| 中日韩在线视频| 亚洲第一黄色| 亚洲国产另类 国产精品国产免费| 在线不卡欧美| 欧美日韩午夜在线| 一区二区三区在线免费播放| 午夜精品国产精品大乳美女| 国产精品亚洲аv天堂网| 欧美激情国产高清| 亚洲美女电影在线| 亚洲精品乱码久久久久久| 亚洲欧美国产77777| 好吊视频一区二区三区四区| 1024精品一区二区三区| 亚洲少妇最新在线视频| 激情综合自拍| 国产综合色一区二区三区| 亚洲伊人一本大道中文字幕| 国产日产精品一区二区三区四区的观看方式| 欧美剧在线免费观看网站| 欧美亚洲尤物久久| 午夜精品一区二区三区四区| 久久久久国产精品一区| 欧美xart系列高清| 亚洲视频 欧洲视频| 欧美超级免费视 在线| 先锋影音国产精品| 欧美日本一区二区视频在线观看| 女同性一区二区三区人了人一| 久久精品亚洲乱码伦伦中文| 国产专区精品视频| 蜜桃av一区二区在线观看| 亚洲第一区中文99精品| 亚洲精品黄色| 国产午夜精品一区二区三区欧美| 久久天堂精品| 国产亚洲视频在线观看| 欧美一区91| 久久久夜色精品亚洲| 欧美久久久久中文字幕| 亚洲精品日韩欧美| 欧美日韩精品伦理作品在线免费观看| 国产午夜久久久久| 欧美aaa级| 欧美成人午夜| 久久伊人一区二区| 亚洲国产成人一区| 欧美电影美腿模特1979在线看| 欧美影院久久久| 欧美影院视频| 欧美性猛交xxxx乱大交退制版| 亚洲精选中文字幕| 亚洲国产高清aⅴ视频| 国产欧美在线观看一区| 国内精品亚洲| 国产精品视频免费观看www| 一区二区三区在线视频观看| 欧美高清在线视频观看不卡| 欧美亚洲综合在线| 美女露胸一区二区三区| 99精品国产在热久久婷婷| 欧美 日韩 国产在线| 国产欧美日韩亚州综合| 国产精品久久一级| 欧美视频在线观看视频极品| 欧美调教vk| 韩国久久久久| 精品成人a区在线观看| 欧美视频在线免费看| 久久久久久久97| 在线一区二区三区四区| 蜜臀久久99精品久久久画质超高清| 免费成人高清在线视频| 欧美专区亚洲专区| 欧美国产精品| 欧美在线视频播放| 欧美激情性爽国产精品17p| 亚洲一卡二卡三卡四卡五卡| 亚洲国产精品一区二区尤物区| 亚洲国产欧美久久| 国产乱码精品一区二区三区av| 久久精品五月| 欧美伊人影院| 欧美怡红院视频一区二区三区| 欧美理论大片| 亚洲一二三四区| 亚洲女人天堂av| 欧美日韩国产在线播放网站| 尤物九九久久国产精品的特点| 亚洲欧洲一区二区天堂久久| 免费观看日韩| 亚洲精品视频在线观看网站| av成人手机在线| 国产精品任我爽爆在线播放| 亚洲欧洲一区二区天堂久久| 久久久久一本一区二区青青蜜月| 国产精品九九久久久久久久| 久久精品国产一区二区三| 日韩视频国产视频| 欧美日韩国产在线播放网站| 久久精品国产一区二区三区| 极品中文字幕一区| 欧美大片在线观看| 午夜欧美精品久久久久久久| 欧美午夜在线视频| 欧美成在线观看| 老司机成人在线视频| 国产精品免费网站| 国产精品视频久久久| 欧美在线高清| 久久精品国产久精国产一老狼| 欧美大学生性色视频| 久久久高清一区二区三区| 欧美成人综合在线| 亚洲图色在线| 亚洲在线国产日韩欧美| 欧美四级剧情无删版影片| 国产精品揄拍一区二区| 欧美日韩三区| 亚洲一二三区在线观看| 亚洲老板91色精品久久| 亚洲在线观看免费视频| 亚洲人体偷拍| 欧美大片在线观看一区| 国产美女精品| 欧美xxxx在线观看| 日韩视频一区二区在线观看| 亚洲精品日韩激情在线电影| 欧美日韩一区二区三区免费| 欧美日韩国产经典色站一区二区三区| 国产精品一区二区三区观看| 欧美一区二区三区在线免费观看| 六月丁香综合| 国产一区二区三区久久精品| 亚洲经典自拍| 久久婷婷色综合| 亚洲精品久久7777| 亚洲视频在线观看网站| 久久午夜激情| 亚洲欧美日韩国产综合精品二区| 久久亚洲欧美| 99精品国产福利在线观看免费| 精品av久久久久电影| 亚洲一区二区三区四区中文| 亚洲欧洲久久| 久久久av网站| 久久激情中文| 亚洲欧美在线看| 欧美va天堂在线| 国产精品一区一区三区| 亚洲黄色尤物视频| 一本久久精品一区二区| 牛夜精品久久久久久久99黑人| 久久久精彩视频|