日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS 417編程、代做Python程序語言
代寫CS 417編程、代做Python程序語言

時間:2024-10-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CS 417/517: Introduction to Human Computer Interaction -
Project 1 ( Fall 2024 )
1 Introduction
In this assignment, your task is to implement a Convolutional Neural Network (CNN) and evaluate
its performance in classifying handwritten digits. After completing this assignment, you are able to
understand:
• How Neural Network works? How to implement Neural Network?
• How to setup a Machine Learning experiment on public data?
• How regularization, dropout plays a role in machine learning implementation?
• How to ffne-tune a well-train model?
To get started with the exercise, you will need to download the supporting ffles and unzip its
contents to the directory you want to complete this assignment.
2 Dataset
The MNIST dataset consists of a training set of 60000 examples and a test set of 10000 examples.
All digits have been size-normalized and centered in a ffxed image of 28 × 28 size. In the original
dataset, each pixel in the image is represented by an integer between 0 and 255, where 0 is black,
255 is white and anything between represents a different shade of gray. In many research papers, the
offfcial training set of 60000 examples is divided into an actual training set of 50000 examples and a
validation set of 10000 examples.
3 Implementation
( Notice : You can use any library to ffnish this project. We recommend students to use Google
Colab, which is a cloud-based service that allows you to run Jupyter Notebooks for free. To start
1this, follow these steps. 1. Open your web browser and go to the Google Colab website by visiting
colab.research.google.com. 2. Sign up and Sign in. 3. After signing in, you can start a new notebook
by clicking on File - New notebook. )
3.1 Tasks
Code Task [70 Points]: Implement Convolution Neural networks (CNN) to train and test the
MNIST or FER-2013 dataset, and save the well-train model.
Code Task (1) Build your customized Convolution Neural Network (CNN)
• Deffne the architecture of a Convolution Neural Network (CNN) with more than 3 layers, that
takes these images as input and gives as output what the handwritten digits represent for this
image.
• Test your machine learning model on the testing set: After ffnishing the architecture of CNN
models, ffx your hyper-parameters(learning rate, lambda for penalty, number of layers, and
number of neurons per layer), and test your model’s performance on the testing set.
• Implement different optimizer (i.e., at least two). Compare the results in report and analyze the
potential reasons.
• Implement different regularization methods for the Neural Networks, such as Dropout, l1 or l2.
Compare the results in report and analyze the potential reasons.
Code Task (2) Fine-tune at least three different well-pretrained models (e.g., MobileNetV3,
Resnet50 ) to get a good performance. You need to choose the speciffc layers to retrained and write
it in the report.
Code Task (3): This code task is only for CS517. Recognize handwritten digits from a
recorded video using the pre-trained model and OpenCV libraries.
Notice: The students in CS417 will get 20 points bonus if they ffnish this part.
Load the video and read frames.
Load the pre-trained model.
While the input is available, read the next frame.
Process the frame. (options: resizing, cropping, blurring, converting to
grayscale, binarizing, normalizing and etc.)
Input the processed frame into the model.
Use a threshold to detect digits.
Put a contour around the digit and label the predicted value and probability.
Display the frame.
Release resources.
Hint: Here lists some of the functions you might use.
cv2.VideoCapture
cv2.resize
cv2.cvtColor
2cv2.threshold
cv2.putText
cv2.rectangle
cv2.imshow
cv2.waitKey
cv2.destroyAllWindows
Writing Report Task [30 Points]: Write a report to describe above implementation details and
corresponding results.
4 Deliverables
There are two deliverables: report and code.
1. Report (30 points) The report should be delivered as a separate pdf ffle, and it is recommended
for you to use the NIPS template to structure your report. You may include comments in the
Jupyter Notebook, however you will need to duplicate the results in the report. The report
should describe your results, experimental setup, details and comparison between the results
obtained from different setting of the algorithm and dataset.
2. Code (70 points)
The code for your implementation should be in Python only. The name of the Main ffle should
be main.ipynb. Please provide necessary comments in the code and show some essential steps
for your group work.
3

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp







 

掃一掃在手機打開當前頁
  • 上一篇:代做COMP 412、代寫python設計編程
  • 下一篇:CVEN9612代寫、代做Java/Python程序設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产精品igao视频网网址不卡日韩| 欧美在线观看天堂一区二区三区| 99热这里只有精品8| 加勒比av一区二区| 亚洲欧美综合国产精品一区| 久久嫩草精品久久久久| 欧美日一区二区三区在线观看国产免| 国产精品专区一| 好男人免费精品视频| 国产一区二区三区在线观看视频| 欧美午夜女人视频在线| 亚洲一区二区精品在线| 久久九九全国免费精品观看| 久久精品99国产精品酒店日本| 久久久久久夜| 欧美一区二区高清| 亚洲精品123区| 欧美大片在线观看一区| 亚洲男同1069视频| 国产一区免费视频| 欧美一区二区| 国内精品久久久久影院 日本资源| 国产精品成人一区二区网站软件| 欧美在线一二三区| 亚洲国产精品高清久久久| 亚洲人成网站精品片在线观看| 在线观看中文字幕亚洲| 狠狠色狠狠色综合日日小说| 亚洲国产一区二区视频| 亚洲片国产一区一级在线观看| 国产欧美精品日韩区二区麻豆天美| 激情伊人五月天久久综合| 久久久久久9999| 亚洲精品中文字| av成人天堂| 黄色精品网站| 欧美aa在线视频| 国产精品影片在线观看| 久久久久久久久久看片| 欧美在线www| 中文av一区特黄| 国产亚洲精品自拍| 99视频精品在线| 老司机午夜精品视频| 欧美日韩国产在线| 亚洲毛片av在线| 一本高清dvd不卡在线观看| 亚洲精品中文字幕有码专区| 欧美日韩国产在线一区| aa亚洲婷婷| 在线观看福利一区| 免费成人高清在线视频| 国产精品国产精品国产专区不蜜| 一区在线播放| 亚洲视频高清| 国产日韩欧美三级| 国产亚洲精品aa| 国产亚洲欧美一级| 欧美激情网友自拍| 久久资源在线| 亚洲精品亚洲人成人网| 欧美在线在线| 在线成人小视频| 国模一区二区三区| 欧美一区国产二区| 国产区日韩欧美| 日韩亚洲不卡在线| 国产欧美日韩三区| 国外成人网址| 欧美一区二区日韩| 国产精品香蕉在线观看| 最新国产成人av网站网址麻豆| 久久久久久一区二区| 在线观看精品视频| 欧美手机在线| 欧美理论视频| 一区二区日韩免费看| 在线观看亚洲视频啊啊啊啊| 国产在线视频欧美一区二区三区| 国产精品都在这里| 国产美女扒开尿口久久久| 国产免费成人| 欧美日韩第一区日日骚| 久久精品国产亚洲一区二区| 欧美日韩一区二区三区在线视频| 亚洲激情精品| 在线不卡a资源高清| 欧美亚洲第一区| 午夜精品福利一区二区三区av| 免费观看成人www动漫视频| 免费观看亚洲视频大全| 国产欧美1区2区3区| 欧美精品一区二区三区高清aⅴ| 欧美一区二区三区婷婷月色| 欧美日韩裸体免费视频| 国产精品久久久久久久久久三级| 国产欧美视频一区二区三区| 欧美特黄视频| 欧美日韩国产在线看| 香蕉成人啪国产精品视频综合网| 亚洲国产日韩欧美在线图片| 国产精品美女主播| 欧美日韩国产va另类| 国内精品伊人久久久久av一坑| 久久aⅴ国产紧身牛仔裤| 亚洲精品久久久久久久久久久久久| 激情综合视频| 一本色道久久综合亚洲精品不| 欧美性色综合| 宅男噜噜噜66国产日韩在线观看| 在线综合+亚洲+欧美中文字幕| 亚洲国产精品va在线看黑人动漫| 国产九九视频一区二区三区| 午夜精品久久久久久久久久久| 久久精品男女| 久久噜噜亚洲综合| 欧美婷婷在线| 欧美亚州韩日在线看免费版国语版| 久久久久久一区| 国产欧美日韩精品一区| 欧美日韩国产综合视频在线| 久久在线观看视频| 国产精品久久久91| 欧美久久综合| 欧美日韩精品在线视频| 红桃视频国产精品| 亚洲七七久久综合桃花剧情介绍| 亚洲久色影视| 在线高清一区| 国产欧美日韩在线播放| 欧美极品影院| 亚洲精品一二三区| 国产日韩欧美日韩大片| 国产精品网站在线播放| 欧美国产一区二区在线观看| 国产精品一区久久| 亚洲免费电影在线| 免费美女久久99| 亚洲免费观看高清完整版在线观看| 欧美午夜电影在线观看| 欧美日韩不卡在线| 久久精品视频在线观看| 欧美一区二区三区在线播放| 欧美手机在线视频| 欧美大片免费| 久久国产直播| 在线观看亚洲精品| 欧美一级大片在线免费观看| 久久午夜羞羞影院免费观看| 久久精品水蜜桃av综合天堂| 久久综合给合| 亚洲精品久久久久| 激情欧美一区二区| 亚洲承认在线| 蜜臀av性久久久久蜜臀aⅴ| 亚洲欧美国产不卡| 国产视频自拍一区| 国产精品高潮呻吟视频| 亚洲美女视频在线免费观看| 亚洲精品一区在线| 国产精品v欧美精品∨日韩| 欧美一区二区三区电影在线观看| 久久美女艺术照精彩视频福利播放| 欧美搞黄网站|