日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS 417編程、代做Python程序語言
代寫CS 417編程、代做Python程序語言

時間:2024-10-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CS 417/517: Introduction to Human Computer Interaction -
Project 1 ( Fall 2024 )
1 Introduction
In this assignment, your task is to implement a Convolutional Neural Network (CNN) and evaluate
its performance in classifying handwritten digits. After completing this assignment, you are able to
understand:
• How Neural Network works? How to implement Neural Network?
• How to setup a Machine Learning experiment on public data?
• How regularization, dropout plays a role in machine learning implementation?
• How to ffne-tune a well-train model?
To get started with the exercise, you will need to download the supporting ffles and unzip its
contents to the directory you want to complete this assignment.
2 Dataset
The MNIST dataset consists of a training set of 60000 examples and a test set of 10000 examples.
All digits have been size-normalized and centered in a ffxed image of 28 × 28 size. In the original
dataset, each pixel in the image is represented by an integer between 0 and 255, where 0 is black,
255 is white and anything between represents a different shade of gray. In many research papers, the
offfcial training set of 60000 examples is divided into an actual training set of 50000 examples and a
validation set of 10000 examples.
3 Implementation
( Notice : You can use any library to ffnish this project. We recommend students to use Google
Colab, which is a cloud-based service that allows you to run Jupyter Notebooks for free. To start
1this, follow these steps. 1. Open your web browser and go to the Google Colab website by visiting
colab.research.google.com. 2. Sign up and Sign in. 3. After signing in, you can start a new notebook
by clicking on File - New notebook. )
3.1 Tasks
Code Task [70 Points]: Implement Convolution Neural networks (CNN) to train and test the
MNIST or FER-2013 dataset, and save the well-train model.
Code Task (1) Build your customized Convolution Neural Network (CNN)
• Deffne the architecture of a Convolution Neural Network (CNN) with more than 3 layers, that
takes these images as input and gives as output what the handwritten digits represent for this
image.
• Test your machine learning model on the testing set: After ffnishing the architecture of CNN
models, ffx your hyper-parameters(learning rate, lambda for penalty, number of layers, and
number of neurons per layer), and test your model’s performance on the testing set.
• Implement different optimizer (i.e., at least two). Compare the results in report and analyze the
potential reasons.
• Implement different regularization methods for the Neural Networks, such as Dropout, l1 or l2.
Compare the results in report and analyze the potential reasons.
Code Task (2) Fine-tune at least three different well-pretrained models (e.g., MobileNetV3,
Resnet50 ) to get a good performance. You need to choose the speciffc layers to retrained and write
it in the report.
Code Task (3): This code task is only for CS517. Recognize handwritten digits from a
recorded video using the pre-trained model and OpenCV libraries.
Notice: The students in CS417 will get 20 points bonus if they ffnish this part.
Load the video and read frames.
Load the pre-trained model.
While the input is available, read the next frame.
Process the frame. (options: resizing, cropping, blurring, converting to
grayscale, binarizing, normalizing and etc.)
Input the processed frame into the model.
Use a threshold to detect digits.
Put a contour around the digit and label the predicted value and probability.
Display the frame.
Release resources.
Hint: Here lists some of the functions you might use.
cv2.VideoCapture
cv2.resize
cv2.cvtColor
2cv2.threshold
cv2.putText
cv2.rectangle
cv2.imshow
cv2.waitKey
cv2.destroyAllWindows
Writing Report Task [30 Points]: Write a report to describe above implementation details and
corresponding results.
4 Deliverables
There are two deliverables: report and code.
1. Report (30 points) The report should be delivered as a separate pdf ffle, and it is recommended
for you to use the NIPS template to structure your report. You may include comments in the
Jupyter Notebook, however you will need to duplicate the results in the report. The report
should describe your results, experimental setup, details and comparison between the results
obtained from different setting of the algorithm and dataset.
2. Code (70 points)
The code for your implementation should be in Python only. The name of the Main ffle should
be main.ipynb. Please provide necessary comments in the code and show some essential steps
for your group work.
3

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp







 

掃一掃在手機打開當前頁
  • 上一篇:代做COMP 412、代寫python設計編程
  • 下一篇:CVEN9612代寫、代做Java/Python程序設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        久久综合网络一区二区| 欧美不卡视频一区| 亚洲免费观看在线观看| 亚洲国产欧美日韩精品| 性欧美超级视频| 亚洲一区二区成人在线观看| 亚洲免费观看| 美女视频黄a大片欧美| 国产精品成人一区| 日韩午夜在线观看视频| 国产精品高潮在线| 亚洲电影在线免费观看| 在线亚洲国产精品网站| 91久久久一线二线三线品牌| 国产精品二区影院| 亚洲欧美激情在线视频| 欧美日韩高清在线一区| 亚洲综合视频1区| 国产精品美女久久久久久2018| 欧美日本精品在线| 欧美日本一区二区视频在线观看| 亚洲在线观看视频| 狠狠综合久久av一区二区小说| 亚洲精品欧美日韩| 久久久999精品视频| 激情成人av在线| 国产一区二区三区久久久久久久久| 亚洲黄色免费| 亚洲丰满在线| 国产日韩成人精品| 国产亚洲a∨片在线观看| 91久久久一线二线三线品牌| 老司机凹凸av亚洲导航| 亚洲欧美国产日韩中文字幕| 1024成人网色www| 久久影视精品| 精品动漫一区二区| 久久久人成影片一区二区三区观看| 亚洲综合导航| 欧美激情第4页| 性久久久久久久久久久久| 狠狠v欧美v日韩v亚洲ⅴ| 怡红院精品视频在线观看极品| 亚洲手机成人高清视频| 亚洲精品中文在线| 欧美国产激情二区三区| 亚洲久久成人| 国产精品天天摸av网| 欧美成人精品1314www| 亚洲黄色在线视频| 亚洲激情成人网| 美女久久网站| 一区二区三区欧美激情| 午夜精品久久久久久久99樱桃| 午夜日韩av| 亚洲乱码国产乱码精品精天堂| 亚洲日本成人在线观看| 久久资源av| 亚洲国产乱码最新视频| 国产一区二区无遮挡| 国产精品爽爽爽| 亚洲国产二区| 亚洲电影有码| 欧美一区二视频在线免费观看| 国产精品国产自产拍高清av王其| 国产精品性做久久久久久| 欧美日韩亚洲高清一区二区| 欧美在线精品一区| 国产精品老女人精品视频| 久久久久九九九九| 免费高清在线视频一区·| 欧美视频精品一区| 狠狠色伊人亚洲综合成人| 欧美亚洲午夜视频在线观看| 国产毛片久久| 欧美精品国产一区二区| 欧美成人综合| 国产精品久久久久久久午夜| 欧美色网在线| 亚洲欧美日韩人成在线播放| 欧美一区成人| 欧美电影资源| 久久精品一区二区三区不卡牛牛| 久久久人成影片一区二区三区观看| 久久久久久久久蜜桃| 激情综合视频| 久久久久久亚洲综合影院红桃| 欧美在线视频导航| 一区二区动漫| 国产精品综合色区在线观看| 在线观看视频欧美| 久久精品91久久香蕉加勒比| 亚洲摸下面视频| 亚洲激情网址| 欧美性视频网站| 美脚丝袜一区二区三区在线观看| 亚洲裸体俱乐部裸体舞表演av| 欧美中文在线观看| 亚洲电影视频在线| 最新成人在线| 欧美午夜精品久久久久久孕妇| 亚洲视频在线观看三级| 国产精品国产三级国产普通话蜜臀| 亚洲福利在线观看| 免费日韩精品中文字幕视频在线| 一区二区三区在线观看国产| 国产日韩欧美在线播放| 国产小视频国产精品| 亚洲视频精品| 国产精品国产三级国产aⅴ浪潮| 欧美精品久久一区二区| 亚洲丁香婷深爱综合| 欧美有码视频| 宅男精品导航| 韩国精品主播一区二区在线观看| 国产日韩精品一区二区三区| 一区二区三区精品在线| 亚洲中无吗在线| 免费在线亚洲欧美| 影音先锋在线一区| 亚洲一区二区三区免费观看| 亚洲免费网站| 欧美日韩在线第一页| 欧美成人在线免费观看| 噜噜噜在线观看免费视频日韩| 国产一区激情| 午夜亚洲伦理| 欧美一区二区久久久| 亚洲视频欧洲视频| 欧美专区日韩视频| 欧美一区二区视频在线观看2020| 午夜精品99久久免费| 免费日韩精品中文字幕视频在线| 国产精品久久久久久久久搜平片| 亚洲色无码播放| 欧美激情女人20p| 最新亚洲一区| 国产精品扒开腿爽爽爽视频| 欧美三级午夜理伦三级中文幕| 欧美日韩亚洲一区二区三区在线| 久久精品免视看| 欧美人成免费网站| 国产欧美精品va在线观看| 欧美大香线蕉线伊人久久国产精品| 影音先锋国产精品| 欧美日韩亚洲一区二区三区四区| 国产一区二区三区四区五区美女| 韩国在线视频一区| 99re6这里只有精品视频在线观看| 一区二区三区鲁丝不卡| 亚洲一二三区在线观看| 一本久久综合| 亚洲国产成人av好男人在线观看| 久久激情视频免费观看| 久久亚洲欧美| 黑人巨大精品欧美一区二区| 亚洲一区三区视频在线观看| 亚洲天堂网站在线观看视频| 欧美日韩国产一区精品一区| 久久久久网址| 国产视频一区在线观看一区免费| 国产精品不卡在线| 久久综合伊人77777麻豆| 国产日韩精品在线播放|