日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CS 550、代寫c++,Java編程語言

時間:2024-03-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CS 550 Operating Systems, Spring 2024
Programming Project 2 (PROJ2)
Out: 2/25/2024, SUN
Due date: 3/23/2024, SAT 23:59:59
There are two parts in this project: coding and Q&A. In the coding part, you will implement a
functionality that changes the outcomes of race conditions after forking in xv6, and implement an
MLFQ-like scheduler for xv6. In the Q&A part, you will need to answer the questions about xv6
process scheduling.
1 Baseline source code
You will work on the base code that needs to be cloned/downloaded from your own private GitHub
repository. Make sure you read this whole section, as well as the grading guidelines (Section 5),
before going to the following link at the end of this section.
• Go to the link at the end of this section to accept the assignment.
• Work on and commit your code to the default branch of your repository. Do not create a
new branch. Failure to do so will lead to problems with the grading script and 5 points off
of your project grade.
Assignment link: https://classroom.github.com/a/2n4W593t
(Continue to the next page.)
1
2 Process scheduling in xv6 - coding (70 points)
2.1 Race condition after fork() (20 points)
As we discussed in class, after a fork(), either the parent process or the child process can be
scheduled to run first. Some OSes schedule the parent to run first most often, while others allow
the child to run first mostly. As you will see, the xv6 OS schedules the parents to run first after
fork()s mostly. In this part, you will change this race condition to allow user programs to specify
which process should run first (i.e., be the winner) after fork() returns.
2.1.1 The test driver program and the expected outputs
The baseline code has included a test driver program fork rc test that allows you to check
the race condition after a fork(). The program is implemented in fork rc test.c. In the
program, the parent process repeatedly calls fork(). After fork(), the parent process prints
string a “parent” when it runs, and the child process prints a string “child” and exits.
The program takes one argument to specify which process should be the “winner” process after
fork() returns. Here is the usage of the program:
$ fork_rc_test
Usage: fork_rc_test 0|1
0: Parent is scheduled to run most often
1: Child is scheduled to run most often
When calling the program using ”fork rc test 0”, the parent process is the fork winner and is
scheduled to run first after fork() most often, which is the default behavior with xv6. You will
see output like the following:
$ fork_rc_test 0
Setting parent as the fork winner ...
Trial 0: parent! child!
Trial 1: parent! child!
Trial 2: parent! child!
Trial 3: pare child! nt!
Trial 4: parent! child!
Trial 5: parent! child!
...
Trial 45: child! parent!
Trial 46: parent! child!
Trial **: parent! child!
Trial 48: parent child! !
Trial 49: pare child! nt!
Note that in the above output, the parent did not always run first. But it was so for most trials.
What determines which process runs first after the fork? Think about the reason. You will answer
a related question later in the Q&A part (Section 3).
When calling the program using ”fork rc test 1”, the child process is the fork winner and is
scheduled to run first after fork() most often. With a correct implementation, the expected
output of the test driver program looks like:
2
$ fork_rc_test 1
Setting child as the fork winner ...
Trial 0: child! parent!
Trial 1: child! parent!
Trial 2: child! parent!
Trial 3: c parent! hild!
Trial 4: child! parent!
Trial 5: child! parent!
...
Trial 45: child! parent!
Trial 46: child! parent!
Trial **: child! parent!
Trial 48: child! parent!
Trial 49: child! parent!
2.1.2 What to do
(1) Figure out what to do to change the race condition to enable the feature of changing fork
winner.
(2) Implement a system call that sets the fork winner.
(3) Implement a user space wrapper function for the above system call, and declare it in “user.h”.
This wrapper function’s prototype should be
int fork_winner(int winner);
This function takes one argument:
• If the argument is 0 (i.e., fork winner(0)), the parent process is the winner and
should be scheduled first after fork() most often (this is the default behavior);
• If the argument is 1 (i.e., fork winner(1)), the child process is the winner and should
be scheduled first after fork() most often.
Note: for the proper compilation of the base code, the fork rc test program has a stub
implementation for the wrapper function above. Remember to comment it out after developing
your own solution.
Tips: understanding the code for fork and CPU scheduling is key. The actual code that changes
the race condition (excluding the system-call-related code) can be less than 2 LOC.
(Continue to next page.)
3
2.2 MLFQ scheduling (50 points)
The default scheduler of xv6 adopts a round-robin (RR) policy. In this part, you are going to
implement a scheduler that adopts a scheduling algorithm similar to the MLFQ scheduling policy
we discussed in class.
Specifically, the MLFQ-like process scheduler should work following the rules below:
• Rule 1: There are three different scheduling priorities: 3, 2, and 1, with 3 being the highest
and 1 being the lowest.
• Rule 2: At any given time, the scheduling priority of a process is set to one of the three
values above.
• Rule 3: Runnable processes are scheduled based on their scheduling priorities: processes
with higher priorities will be scheduled before those with lower priorities. RR is used for
scheduling processes that have the same priority.
• Rule 4: When a process is forked, its scheduling priority is set to 3, and its priority is
changed using the following rule.
• Rule 5: Except for the lowest priority (i.e., priority 1), each priority is associated with a
scheduling allotment, which is the number of times that a process with this priority can be
scheduled before the process is demoted to the next lower priority. For example,
– When a process is created, its scheduling priority is set to 3. When this process has
been scheduled x times since its scheduling priority was set to 3, its scheduling priority
is demoted to 2. Therefore, the scheduling allotment for priority 3 is x. The default
value of x is 2.
– When a process with scheduling priority 2 has been scheduled y times since its scheduling priority was set to 2, its scheduling priority is demoted to 1. Therefore, the scheduling allotment for priority 2 is y. The default value of y is 4.
• Rule 6: After a process’s scheduling priority is demoted to 1, it stays with that priority
until it completes.
• Rule 7: When user code uses the set sched() interface to set the scheduling policy to
MLFQ, the scheduler should be reset as if it is a fresh start. This means that the scheduling
priority of the existing processes should be reset back to 3.
2.2.1 The test program, test cases and their expected output
(1) To help you implement and debug, a scheduling tracing functionality has been added to the
base code. When this tracing functionality is enabled, the kernel prints a string like the
following every time before a process is scheduled.
[MLFQ] PID:7|PRT:3
The above string means the MLFQ scheduler is going to schedule the process with PID 7, and
the process’s scheduling priority is 3. With this scheduling tracing functionality, you can see
the sequence of processes that the scheduler schedules.
4
(2) The code (schdtest.c) for test program that will be used for grading (schdtest) has been
provided. This code is not supposed to be changed except for commenting out or removing
the stub functions at the top. Reading and understanding this test program and each of the
test cases will be helpful.
(3) Five test cases are used in the test program. Each of this test cases and their expected output
are described as follows.
• Test case 1: In this test case, the parent process enables the scheduling tracing functionality, sets the scheduler type to the default one (i.e., RR), creates 3 child processes,
each of which performs some long computation, and waits for their completion. When
all three child process complete, the parent process disables the scheduling tracing. The
expected scheduling tracing output is as follows:
>>>>> Test case 1: testing default scheduler (RR) ...
Parent: child (pid=4) created!
Parent: child (pid=5) created!
Parent: child (pid=6) created!
[RR] PID:4|PRT:0 -> [RR] PID:5|PRT:0 -> [RR] PID:6|PRT:0 ->
[RR] PID:4|PRT:0 -> [RR] PID:5|PRT:0 -> [RR] PID:6|PRT:0 ->
[RR] PID:4|PRT:0 -> [RR] PID:5|PRT:0 -> [RR] PID:6|PRT:0 ->
...
[RR] PID:3|PRT:0 -> [RR] PID:6|PRT:0 -> [RR] PID:6|PRT:0 ->
[RR] PID:6|PRT:0 -> [RR] PID:6|PRT:0 -> [RR] PID:6|PRT:0 ->
[RR] PID:3|PRT:0 ->
Since the RR scheduler does not use scheduling priority, the scheduling priority of individual processes should be set to 0 when RR is in effect. From the output we can see
that the RR was indeed the scheduling policy.
• Test case 2: In this test case, the parent process enables the scheduling tracing functionality, sets the scheduler type to MLFQ, creates 3 child processes, each of which performs
some long computation, and waits for their completion. When all three child process
complete, the parent process disables the scheduling tracing. The expected scheduling
tracing output is as follows:
>>>>> Test case 2: testing MLFQ scheduler with default allotment ...
Parent: child (pid=7) created!
Parent: child (pid=8) created!
Parent: child (pid=9) created!
[MLFQ] PID:7|PRT:3 -> [MLFQ] PID:8|PRT:3 -> [MLFQ] PID:9|PRT:3 ->
[MLFQ] PID:7|PRT:3 -> [MLFQ] PID:8|PRT:3 -> [MLFQ] PID:9|PRT:3 ->
[MLFQ] PID:7|PRT:2 -> [MLFQ] PID:8|PRT:2 -> [MLFQ] PID:9|PRT:2 ->
[MLFQ] PID:7|PRT:2 -> [MLFQ] PID:8|PRT:2 -> [MLFQ] PID:9|PRT:2 ->
[MLFQ] PID:7|PRT:2 -> [MLFQ] PID:8|PRT:2 -> [MLFQ] PID:9|PRT:2 ->
[MLFQ] PID:7|PRT:2 -> [MLFQ] PID:8|PRT:2 -> [MLFQ] PID:9|PRT:2 ->
[MLFQ] PID:7|PRT:1 -> [MLFQ] PID:8|PRT:1 -> [MLFQ] PID:9|PRT:1 ->
[MLFQ] PID:7|PRT:1 -> [MLFQ] PID:8|PRT:1 -> [MLFQ] PID:9|PRT:1 ->
...
[MLFQ] PID:7|PRT:1 -> [MLFQ] PID:8|PRT:1 -> [MLFQ] PID:9|PRT:1 ->
[MLFQ] PID:7|PRT:1 -> [MLFQ] PID:3|PRT:3 -> [MLFQ] PID:8|PRT:1 ->
[MLFQ] PID:3|PRT:3 -> [MLFQ] PID:9|PRT:1 -> [MLFQ] PID:9|PRT:1 ->
5
[MLFQ] PID:9|PRT:1 -> [MLFQ] PID:9|PRT:1 -> [MLFQ] PID:9|PRT:1 ->
[MLFQ] PID:9|PRT:1 -> [MLFQ] PID:3|PRT:2 ->
The default allotments are used in this test case. Therefore, as shown in the scheduling
tracing output, the three child processes started with priority 3 at the beginning. They
were scheduled in an RR manner 2 times and were demoted to priority 2 (because the
default allotment for priority 3 is 2). While their scheduling priority was 2, they were
scheduled in an RR manner 4 times and then were demoted to priority 1 (because the
default allotment for priority 2 is 4).
Note that the PID of the parent process is 3 in this example. The parent process was
not scheduled until the end of the trace because it was waiting for the child processes’
completion. It was scheduled three times at the end (see the last three lines in the output),
each of which was returning from wait() when one of the child processes exited.
• Test case 3: This is a repeat of test case 1.
• Test case 4: In this test case, the parent process enables the scheduling tracing functionality, sets the scheduler type to MLFQ, creates 3 child processes, each of which performs
some long computation, and waits for their completion. In the middle of the long computation, one of the three child process (whose PID is multiples of 3) forks a grand-child
process which is termed as “runtime generated process” in the test code, and waits for
its completion. When all three child process complete, the parent process disables the
scheduling tracing. The expected scheduling tracing output is as follows:
>>>>> Test case 4: testing MLFQ scheduler with runtime generated process ...
Parent: child (pid=13) created!
Parent: child (pid=14) created!
Parent: child (pid=15) created!
[MLFQ] PID:13|PRT:3 -> [MLFQ] PID:14|PRT:3 -> [MLFQ] PID:15|PRT:3 ->
[MLFQ] PID:13|PRT:3 -> [MLFQ] PID:14|PRT:3 -> [MLFQ] PID:15|PRT:3 ->
[MLFQ] PID:13|PRT:2 -> [MLFQ] PID:14|PRT:2 -> [MLFQ] PID:15|PRT:2 ->
[MLFQ] PID:13|PRT:2 -> [MLFQ] PID:14|PRT:2 -> [MLFQ] PID:15|PRT:2 ->
[MLFQ] PID:13|PRT:2 -> [MLFQ] PID:14|PRT:2 -> [MLFQ] PID:15|PRT:2 ->
[MLFQ] PID:13|PRT:2 -> [MLFQ] PID:14|PRT:2 -> [MLFQ] PID:15|PRT:2 ->
[MLFQ] PID:13|PRT:1 -> [MLFQ] PID:14|PRT:1 -> [MLFQ] PID:15|PRT:1 ->
...
[MLFQ] PID:13|PRT:1 -> [MLFQ] PID:14|PRT:1 -> [MLFQ] PID:15|PRT:1 ->
[MLFQ] PID:13|PRT:1 -> [MLFQ] PID:14|PRT:1 -> [MLFQ] PID:15|PRT:1 ->
[MLFQ] PID:16|PRT:3 -> [MLFQ] PID:16|PRT:3 -> [MLFQ] PID:16|PRT:2 ->
[MLFQ] PID:16|PRT:2 -> [MLFQ] PID:16|PRT:2 -> [MLFQ] PID:16|PRT:2 ->
[MLFQ] PID:13|PRT:1 -> [MLFQ] PID:14|PRT:1 -> [MLFQ] PID:16|PRT:1 ->
[MLFQ] PID:13|PRT:1 -> [MLFQ] PID:14|PRT:1 -> [MLFQ] PID:16|PRT:1 ->
...
[MLFQ] PID:13|PRT:1 -> [MLFQ] PID:14|PRT:1 -> [MLFQ] PID:16|PRT:1 ->
[MLFQ] PID:13|PRT:1 -> [MLFQ] PID:3|PRT:3 -> [MLFQ] PID:14|PRT:1 ->
[MLFQ] PID:16|PRT:1 -> [MLFQ] PID:14|PRT:1 -> [MLFQ] PID:3|PRT:3 ->
[MLFQ] PID:16|PRT:1 -> [MLFQ] PID:16|PRT:1 -> [MLFQ] PID:16|PRT:1 ->
...
[MLFQ] PID:16|PRT:1 -> [MLFQ] PID:15|PRT:1 -> [MLFQ] PID:15|PRT:1 ->
[MLFQ] PID:15|PRT:1 -> [MLFQ] PID:15|PRT:1 -> [MLFQ] PID:15|PRT:1 ->
...
[MLFQ] PID:15|PRT:1 -> [MLFQ] PID:15|PRT:1 -> [MLFQ] PID:15|PRT:1 ->
[MLFQ] PID:15|PRT:1 -> [MLFQ] PID:15|PRT:1 -> [MLFQ] PID:3|PRT:2 ->
6
This test case is similar to test case 2 but with a new process generated during runtime.
In the above output, the PID of the runtime-generated process is 16, and the PID of the
runtime-generated process’s parent is 15. If one understands the expected output of test
case 2, the above output for this test case should be easily understandable.
• Test case 5: This test case is similar to test case 2 but with different allotments than
the default one. The allotments of priority 3 and 2 are set to 4 and 8 before the test, and
they are set back to the default values after the test. The expected scheduling tracing
output is as follows:
>>>>> Test case 5: testing MLFQ scheduler with new allotments ...
Parent: child (pid=17) created!
Parent: child (pid=18) created!
Parent: child (pid=19) created!
[MLFQ] PID:17|PRT:3 -> [MLFQ] PID:18|PRT:3 -> [MLFQ] PID:19|PRT:3 ->
[MLFQ] PID:17|PRT:3 -> [MLFQ] PID:18|PRT:3 -> [MLFQ] PID:19|PRT:3 ->
[MLFQ] PID:17|PRT:3 -> [MLFQ] PID:18|PRT:3 -> [MLFQ] PID:19|PRT:3 ->
[MLFQ] PID:17|PRT:3 -> [MLFQ] PID:18|PRT:3 -> [MLFQ] PID:19|PRT:3 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:2 -> [MLFQ] PID:18|PRT:2 -> [MLFQ] PID:19|PRT:2 ->
[MLFQ] PID:17|PRT:1 -> [MLFQ] PID:18|PRT:1 -> [MLFQ] PID:19|PRT:1 ->
[MLFQ] PID:17|PRT:1 -> [MLFQ] PID:18|PRT:1 -> [MLFQ] PID:19|PRT:1 ->
...
[MLFQ] PID:17|PRT:1 -> [MLFQ] PID:18|PRT:1 -> [MLFQ] PID:3|PRT:3 ->
[MLFQ] PID:3|PRT:3 -> [MLFQ] PID:17|PRT:1 -> [MLFQ] PID:3|PRT:3 ->
[MLFQ] PID:3|PRT:3 -> [MLFQ] PID:19|PRT:1 -> [MLFQ] PID:19|PRT:1 ->
[MLFQ] PID:19|PRT:1 -> [MLFQ] PID:19|PRT:1 -> [MLFQ] PID:19|PRT:1 ->
[MLFQ] PID:19|PRT:1 -> [MLFQ] PID:3|PRT:2 -> [MLFQ] PID:3|PRT:2 ->
Again, the above output should be easily understandable if one understands that of test
case 2.
2.2.2 What to do
(1) If you run the test program included in the base code, you’ll notice that the output of the OS
kernel scheduling tracing messages is mixed with the messages printed by the parent process.
This is because scheduling context switches happen as the parent process is forking child
processes. To ensure that the test program can generate a nicely formatted output as shown
above, your job is to implement a functionality that allows user programs to pause scheduling
different processes.
• Write a system call that pauses process scheduling. When process scheduling is paused,
the OS will keep running the current process until process scheduling is enabled again.
• Write the corresponding system call user space wrapper function, and declare it in
“user.h”. The wrapper function’s prototype should be:
7
void pause_scheduling(int pause);
– Description: This function pauses process scheduling.
– Arguments: This function takes one arguments.
– pause: To pause process scheduling, set this argument to 1. To enable process
scheduling, set this argument to 0.
– Return value: This function has no return value.
(2) Implement the functionality that allows user programs to set the allotments of different
scheduling priorities.
• Write a system call that sets the allotments of a scheduling priority.
• Write the corresponding system call user space wrapper function, and declare it in
“user.h”. The wrapper function’s prototype should be:
int mlfq_set_allotment(int priority, int allotment);
– Description: This function sets allotment of the “priority” (first arg) to “allotment”
(second arg).
– Arguments: This function takes two arguments.
– priority: the scheduling priority of which the allotment is to set.
– allotment: the new allotment value.
– Return value: On successfully setting the allotment for the priority, this function
returns 0. The function returns -1 on failures.
.
(3) Implement the MLFQ scheduling policy, remove the stub functions defined at the beginning
of schdtest.c (by simply removing the “STUB FUNCS” macro definition), and test your
implementation.
Note: Your implementation should keep the patch that fixes the always-100% CPU utilization
problem. If your code causes the problem to re-occur, 10 points off (see the 4th point in the
“Grading” section for details).
2.2.3 Tips
You may have noticed that the MLFQ scheduling policy you are going to implement is referred
to as MLFQ-like scheduling policy in the above description. The difference between the MLFQ
policy you will be implementing in this project and the MLFQ policy you learned in class is that
the MLFQ policy in this project does not mandate using different queues for different scheduling
priorities. Therefore, you are allowed to keep the current single-queue design intact in xv6 and
implement the required MLFQ logic. In other words, here the ”Q” is not necessarily physical
queues that are backed by queue data structures. It can be logical queues as well.
Learning in xv6 code how process scheduling context switches happen will be helpful for implementing the functionality of pausing process scheduling.
(Continue to next page.)
8
3 Process scheduling in xv6 - Q&A (30 points)
Answer the following questions about process scheduling implementation.
Q1: (10 points) Does xv6 kernel use cooperative approach or non-cooperative approach to gain
control while a user process is running? Explain how xv6’s approach works using xv6’s code.
Q2: (10 points) After fork() is called, why does the parent process run before the child process
in most of the cases? But in some cases, the child does run first. In what scenario will the
child process run before the parent process after fork()?
Q3: (10 points) When the scheduler de-schedules an old process and schedules a new process, it
saves the context (i.e., the CPU registers) of the old process and load the context of the new
process. Show the code which performs these context saving/loading operations. Show how
this piece of code is reached when saving the old process’s and loading the new process’s
context.
Key in your answers to the above questions with any the editor you prefer, export them in a PDF
file named “xv6-sched-mechanisms.pdf”, and submit the file to the assignment link in Brightspace.
9
4 Submit your work
Once your code in your GitHub private repository is ready for grading, submit a text
file named “DONE” (and the previous “xv6-sched-mechanisms.pdf”) to the assignment
link in Brightspace. We will not be able to know your code in your GitHub repository is ready for grading until we see the ”DONE” file in Brightspace. Forgetting to
submit the ”DONE” file will lead to a late penalty applied, as specified later in the
”Grading” section.
Important notes:
• If you have referred to any form of online materials or resources when completing this project
(code and Q&A), please state all the references in this “DONE” file. Failure to do so, once
detected, will lead to zero points for the entire project and further penalties depending on
the severity of the violation.
• To encourage (discourage) early (late) starts on this project, the instructor and the TAs will
not respond to questions related to the project on the due date.
Suggestion: Test your code thoroughly on a CS machine before submitting.
10
5 Grading
The following are the general grading guidelines for this and all future projects.
(1) The code in your repository will not be graded until a “DONE” file is submitted
to Brightspace.
(2) The submission time of the “DONE” file shown on the Brightspace system will be used to
determine if your submission is on time or to calculate the number of late days. Late penalty
is 10% of the points scored for each of the first two days late, and 20% for each of the days
thereafter.
(3) If you are to compile and run the xv6 system on the department’s remote cluster, remember to
use the baseline xv6 source code provided by our GitHub classroom. Compiling and running
xv6 source code downloaded elsewhere can cause 100% CPU utilization on QEMU.
Removing the patch code from the baseline code will also cause the same problem. So make
sure you understand the code before deleting them.
If you are reported by the system administrator to be running QEMU with 100% CPU utilization on QEMU, 10 points off.
(4) If the submitted patch cannot successfully patched to the baseline source code, or the patched
code does not compile:
1 TA will try to fix the problem (for no more than 3 minutes);
2 if (problem solved)
3 1%-10% points off (based on how complex the fix is, TA’s discretion);
4 else
5 TA may contact the student by email or schedule a demo to fix the problem;
6 if (problem solved)
7 11%-20% points off (based on how complex the fix is, TA’s discretion);
8 else
9 All points off;
So in the case that TA contacts you to fix a problem, please respond to TA’s email promptly
or show up at the demo appointment on time; otherwise the line 9 above will be effective.
(5) If the code is not working as required in the project spec, the TA should take points based on
the assigned full points of the task and the actual problem.
(6) Lastly but not the least, stick to the collaboration policy stated in the syllabus:
you may discuss with you fellow students, but code should absolutely be kept
private. Any kind of cheating will result in zero point on the project, and further
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:TCS3393 DATA MINING代做、代寫Python/Java編程
  • 下一篇:CS551J編程代寫、Java/c++程序設計代做
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲欧美另类中文字幕| 欧美jizzhd精品欧美巨大免费| 国产色爱av资源综合区| 欧美日韩国产影片| 亚洲欧美中文日韩v在线观看| 久久天天躁狠狠躁夜夜爽蜜月| 你懂的网址国产 欧美| 极品裸体白嫩激情啪啪国产精品| 久久影音先锋| 欧美一区二区精品在线| 亚洲最新合集| 精品动漫3d一区二区三区| 亚洲视屏在线播放| 国产精品99久久久久久白浆小说| 欧美日韩国产一中文字不卡| 亚洲欧美激情在线视频| 国产在线拍揄自揄视频不卡99| 91久久久久久| 一本色道久久综合亚洲精品婷婷| 亚洲福利国产精品| 国产乱码精品一区二区三| 亚洲一级特黄| 噜噜噜久久亚洲精品国产品小说| 国产美女精品免费电影| 亚洲国产日韩欧美一区二区三区| 欧美在线看片a免费观看| 久久精品青青大伊人av| 久久亚洲欧美| 国产精品腿扒开做爽爽爽挤奶网站| 精东粉嫩av免费一区二区三区| 亚洲欧洲精品一区二区三区不卡| 99国产精品久久久久老师| 久久综合九色欧美综合狠狠| 亚洲第一色中文字幕| 欧美一级淫片aaaaaaa视频| 亚洲性感美女99在线| 欧美福利电影网| 中文在线不卡| 亚洲午夜av电影| 亚洲日本欧美日韩高观看| 一本一本a久久| 欧美一区综合| 久久亚洲捆绑美女| 在线观看欧美日本| 久热这里只精品99re8久| 老鸭窝毛片一区二区三区| 亚洲一区观看| 亚洲精品1区| 亚洲老板91色精品久久| 欧美日韩小视频| 欧美日本亚洲韩国国产| 美女网站久久| 欧美日韩国产丝袜另类| 欧美成人性生活| 亚洲日产国产精品| 欧美大片在线看| 国产在线视频欧美一区二区三区| 91久久久久久| 欧美在线视频一区| 久久久爽爽爽美女图片| 国产午夜精品一区理论片飘花| 亚洲国产一区二区视频| 亚洲精品精选| 欧美伊人久久大香线蕉综合69| 一区二区三区视频在线播放| 久久久精品视频成人| 欧美视频导航| 日韩视频第一页| 亚洲一区二区欧美| 国产精品乱子乱xxxx| 久久综合一区二区三区| 每日更新成人在线视频| 9l视频自拍蝌蚪9l视频成人| 亚洲综合精品一区二区| 国产精品高潮久久| 亚洲一区一卡| 亚洲一区精品电影| 欧美精品免费观看二区| 国产精品成人午夜| 欧美在线亚洲一区| 亚洲国产乱码最新视频| 欧美午夜片欧美片在线观看| 亚洲国产欧美另类丝袜| 亚洲品质自拍| 一区二区在线看| 亚洲视频精品在线| 国产精品一区二区你懂得| 国产亚洲精品久| 最新国产成人在线观看| 欧美亚洲在线| 亚洲全黄一级网站| 国产精品久久77777| 欧美一区二区免费| 欧美福利一区| 亚洲人成亚洲人成在线观看图片| 香蕉亚洲视频| 亚洲精品免费一二三区| 亚洲日韩第九十九页| 国产视频精品xxxx| 亚洲在线1234| 国产精品一区亚洲| 有码中文亚洲精品| 久久久久9999亚洲精品| 欧美视频在线不卡| 亚洲欧洲一区二区三区在线观看| 欧美亚州韩日在线看免费版国语版| 欧美va亚洲va日韩∨a综合色| 国产伊人精品| 欧美另类亚洲| 欧美高清视频一区二区| 亚洲电影av在线| 久久乐国产精品| 欧美xxx在线观看| 久久成人av少妇免费| 亚洲天堂偷拍| 国产精自产拍久久久久久蜜| 小处雏高清一区二区三区| 亚洲永久免费| 欧美日韩第一页| 欧美国产日韩一区| 欧美日韩精品一区视频| 亚洲专区欧美专区| 亚洲国产成人av在线| av成人福利| 亚洲一二三区在线观看| 久久精品在线视频| 亚洲成人在线观看视频| 午夜欧美精品久久久久久久| 国产精品亚洲第一区在线暖暖韩国| 久久久久久婷| 免费成人av在线| 亚洲国产综合91精品麻豆| 一本久久a久久免费精品不卡| 亚洲电影观看| 久久成人精品视频| 亚洲免费福利视频| 亚洲免费激情| 亚洲成色精品| 国产精品高潮呻吟久久| 久久久久网站| 国产精品99久久99久久久二8| 国产自产高清不卡| 亚洲欧美日韩在线不卡| 亚洲精品在线视频| 欧美人与性动交α欧美精品济南到| 欧美激情久久久久| 久久亚洲春色中文字幕久久久| 国产午夜精品全部视频在线播放| 国产伦精品免费视频| 欧美视频在线不卡| 亚洲第一精品电影| 免费观看国产成人| 亚洲国产精品久久久久婷婷884| 久久久一本精品99久久精品66| 欧美一区国产一区| 在线观看中文字幕亚洲| 在线日韩成人| 中文日韩电影网站| 亚洲精品视频在线看| 国产精品久久久久9999| 欧美区国产区| 亚洲欧美区自拍先锋| 亚洲精品女av网站| 影音先锋中文字幕一区二区|