日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP528代寫、代做c/c++編程設計

時間:2023-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman

Problem. This document explains the operations in detail, so you do not need previous

knowledge. You are encouraged to start this as soon as possible. Historically, as the deadline nears, the queue times on Barkla grow as more submissions are tested. You are also

encouraged to use your spare time in the labs to receive help, and clarify any queries you

have regarding the assignment.

1 The Travelling Salesman Problem (TSP)

The travelling salesman problem is a problem that seeks to answer the following question:

‘Given a list of vertices and the distances between each pair of vertices, what is the shortest

possible route that visits each vertex exactly once and returns to the origin vertex?’.

(a) A fully connected graph (b) The shortest route around all vertices

Figure 1: An example of the travelling salesman problem

The travelling salesman problem is an NP-hard problem, that meaning an exact solution

cannot be solved in polynomial time. However, there are polynomial solutions that can

be used which give an approximation of the shortest route between all vertices. In this

assignment you are asked to implement 2 of these.

1.1 Terminology

We will call each point on the graph the vertex. There are 6 vertices in Figure 1.

We will call each connection between vertices the edge. There are 15 edges in Figure 1.z

We will call two vertices connected if they have an edge between them.

The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is

(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.

A partial tour is a tour that has not yet visited all the vertices.

202**024 1

COMP528

2 The solutions

2.1 Preparation of Solution

You are given a number of coordinate files with this format:

x, y

4.81263062**6921, 8.3**19930253777

2.**156816804616, 0.39593575612759

1.13649642931556, 2.2**59458630845

4.4**7**99682118, 2.9749120444**06

9.8****616851393, 9.107****070**

Figure 2: Format of a coord file

Each line is a coordinate for a vertex, with the x and y coordinate being separated by a

comma. You will need to convert this into a distance matrix.

0.000000 8.177698 7.099481 5.381919 5.0870**

8.177698 0.000000 2.577029 3.029315 11.138848

7.099481 2.577029 0.000000 3.426826 11.068045

5.381919 3.029315 3.426826 0.000000 8.139637

5.0870** 11.138848 11.068045 8.139637 0.000000

Figure 3: A distance matrix for Figure 2

To convert the coordinates to a distance matrix, you will need make use of the euclidean

distance formula.

d =

q

(xi − xj )

2 + (yi − yj )

2

(1)

Figure 4: The euclidean distance formula

Where: d is the distance between 2 vertices vi and vj

, xi and yi are the coordinates of the

vertex vi

, and xj and yj are the coordinates of the vertex vj

.

202**024 2

COMP528

2.2 Cheapest Insertion

The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it looks for a vertex that hasn’t been visited, and inserts it between two connected

vertices in the tour, such that the cost of inserting it between the two connected vertices is

minimal.

These steps can be followed to implement the cheapest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always

pick the lowest index or indices.

1. Start off with a vertex vi

.

Figure 5: Step 1 of Cheapest Insertion

2. Find a vertex vj such that the dist(vi

, vj ) is minimal, and create a partial tour (vi

, vj

, vi)

Figure 6: Step 2 of Cheapest Insertion

3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and

vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +

dist(vn+1, vk) − dist(vn, vn+1) is minimal.

202**024 3

COMP528

Figure 7: Step 3 of Cheapest Insertion

4. Repeat step 3 until all vertices have been visited, and are in the tour.

Figure 8: Step 4 of Cheapest Insertion

Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11

2.3 Farthest Insertion

The farthest insertion algorithm begins with two connected vertices in a partial tour. Each

step, it checks for the farthest vertex not visited from any vertex within the partial tour, and

then inserts it between two connected vertices in the partial tour where the cost of inserting

it between the two connected vertices is minimal.

202**024 4

COMP528

These steps can be followed to implement the farthest insertion algorithm. Assume that the

indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always

pick the lowest index(indices).

1. Start off with a vertex vi

.

Figure 10: Step 1 of Farthest Insertion

2. Find a vertex vj such that dist(vi

, vj ) is maximal, and create a partial tour (vi

, vj

, vi).

Figure 11: Step 2 of Farthest Insertion

3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an

unvisited vertex vk such that dist(vn, vk) is maximal.

Figure 12: Step 3 of Farthest Insertion

202**024 5

COMP528

4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is

a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) − dist(vn, vn+1) is

minimal.

Figure 13: Step 4 of Farthest Insertion

5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.

Figure 14: Step 3(2) of Farthest Insertion

Figure 15: Step 4(2) of Farthest Insertion

202**024 6

COMP528

Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11

3 Running your programs

Your program should be able to be ran like so:

./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >

Therefore, your program should accept a coordinate file, and an output file as arguments.

Note that C considers the first argument as the program executable.

Both implementations should read a coordinate file, run either cheapest insertion or farthest

insertion, and write the tour to the output file.

3.1 Provided Code

You are provided with code that can read the coordinate input from a file, and write the

final tour to a file. This is located in the file coordReader.c. You will need to include this

file when compiling your programs.

The function readNumOfCoords() takes a filename as a parameter and returns the number

of coordinates in the given file as an integer.

The function readCoords() takes the filename and the number of coordinates as parameters,

and returns the coordinates from a file and stores it in a two-dimensional array of doubles,

where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y

coordinate for the ith coordinate.

The function writeTourToFile() takes the tour, the tour length, and the output filename

as parameters, and writes the tour to the given file.

202**02**

University of Liverpool Continuous Assessment 1 COMP528

4 Instructions

• Implement a serial solution for the cheapest insertion and the farthest insertion. Name

these: cInsertion.c, fInsertion.c.

• Implement a parallel solution, using OpenMP, for the cheapest insertion and the farthest insertion. Name these: ompcInsertion.c, ompfInsertion.c.

• Create a Makefile and call it ”Makefile” which performs as the list states below. Without the Makefile, your code will not grade on CodeGrade (see more in section 5.1).

– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU compiler

– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler

– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the

GNU compiler

– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the

GNU compiler

– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with

the Intel compiler

– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel

compiler.

• Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording

the time it takes to solve each one. Record the start time after you read from the

coordinates file, and the end time before you write to the output file. Do all testing

with the large data file.

• Plot a speedup plot with the speedup on the y-axis and the number of threads on the

x-axis for each parallel solution.

• Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of

threads on the x-axis for each parallel solution.

• Write a report that, for each solution, using no more than 1 page per solution,

describes: your serial version, and your parallelisation strategy

• In your report, include: the speedup and parallel efficiency plots, how you conducted

each measurement and calculation to plot these, and sreenshots of you compiling and

running your program. These do not contribute to the page limit

202**024 8

COMP528

• Your final submission should be uploaded onto CodeGrade. The files you

upload should be:

– Makefile

– cInsertion.c

– fInsertion.c

– ompcInsertion.c

– ompfInsertion.c

– report.pdf

5 Hints

You can also parallelise the conversion of the coordinates to the distance matrix.

When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...

int ∗ o n e d a r ra y = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

For a 2-D array:

int ∗∗ twod a r ra y = ( int ∗∗) malloc ( numOfElements ∗ s i z e o f ( int ∗ ) ) ;

for ( int i = 0 ; i < numOfElements ; i ++){

twod a r ra y [ i ] = ( int ∗) malloc ( numOfElements ∗ s i z e o f ( int ) ) ;

}

5.1 Makefile

You are instructed to use a MakeFile to compile the code in any way you like. An example

of how to use a MakeFile can be used here:

{make command } : { t a r g e t f i l e s }

{compile command}

c i : c I n s e r t i o n . c coordReader . c

gcc c I n s e r t i o n . c coordReader . c −o c i . exe −lm

Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,

the compile command is automatically executed. It is worth noting, the compile command

must be indented. The target files are the files that must be present for the make command

to execute.

202**024 9

COMP528

6 Marking scheme

1 Code that compiles without errors or warnings 15%

2 Same numerical results for test cases 20%

3 Speedup plot 10%

4 Parallel Efficiency Plot 10%

5 Parallel efficiency up to ** threads 15%

6 Speed of program 10%

11 Clean code and comments 10%

12 Report 10%

Table 1: Marking scheme

7 Deadline

202**024 10

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:MA2552代做、代寫Matlab編程語言
  • 下一篇:代寫選股公式 代做通達信量中尋莊副圖指標
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产精品羞羞答答xxdd| 欧美va天堂| 国产精品成人免费精品自在线观看| 麻豆9191精品国产| 欧美色精品天天在线观看视频| 亚洲另类黄色| 欧美日韩91| 欧美欧美午夜aⅴ在线观看| 亚洲欧美成人精品| 亚洲主播在线观看| 欧美福利视频在线| 久久久久久久综合色一本| 亚洲精品视频一区| 亚洲国产精品成人综合| 国产精品videosex极品| 男女精品网站| 欧美成人日本| 91久久精品美女高潮| 亚洲日本乱码在线观看| 欧美一区午夜精品| 欧美极品欧美精品欧美视频| 亚洲午夜在线视频| 国产欧美日韩一区二区三区在线| 蜜桃av久久久亚洲精品| 久久精品亚洲一区二区| 亚洲欧洲一区二区在线播放| 欧美日韩三区四区| 欧美系列电影免费观看| 欧美久久久久久久久久| 国产日韩欧美综合在线| 亚洲精品在线视频观看| 欧美性久久久| 美女视频一区免费观看| 久久精品91| 在线日韩中文字幕| 国产乱码精品一区二区三区av| 久久综合免费视频影院| 欧美一区二区三区久久精品| 亚洲看片一区| 久久精品一区蜜桃臀影院| 欧美在线三区| 欧美肉体xxxx裸体137大胆| 亚洲国产成人精品视频| 亚洲一区国产视频| 国产精品久久精品日日| 亚洲一区www| 亚洲激情视频在线播放| 亚洲综合二区| 99国内精品久久| 黄色在线一区| 一区二区欧美视频| 国产精品国产自产拍高清av王其| 欧美日韩视频不卡| 国产综合网站| 亚洲欧洲av一区二区三区久久| 欧美国产先锋| 亚洲欧美视频一区| 欧美一区二区三区在线免费观看| 亚洲国产精品一区在线观看不卡| 国产主播一区二区三区四区| 国产精品系列在线播放| 欧美日韩二区三区| 麻豆精品在线播放| 久久久噜久噜久久综合| 亚洲成色www8888| 欧美二区在线| 老司机精品视频网站| 欧美丰满少妇xxxbbb| 影音国产精品| 亚洲一级片在线看| 久久精品日产第一区二区| 这里只有精品视频| 欧美日韩精选| av成人手机在线| 亚洲成色www久久网站| 亚洲欧美日韩精品久久亚洲区| 欧美精品久久久久a| 国产精品久久久久久久久久久久久| 欧美四级在线观看| 国产精品久久久久一区二区三区| 欧美福利一区二区三区| 一区二区三区精品国产| 久久综合电影一区| 久久亚洲高清| 欧美凹凸一区二区三区视频| 国产精品日韩一区| 国产精品99久久久久久久久久久久| 在线视频亚洲| 久久精品国产亚洲aⅴ| 亚洲欧洲在线看| 久久久免费精品视频| 亚洲免费成人av电影| 欧美一区在线直播| 日韩视频免费大全中文字幕| 久久久久一区二区三区四区| 国产精品在线看| 欧美视频手机在线| 亚洲欧美色婷婷| 性欧美超级视频| 9色国产精品| 亚洲人成久久| 欧美视频日韩视频| 欧美日韩精品在线播放| 国产精品麻豆欧美日韩ww| 美女视频网站黄色亚洲| 久久精品国产视频| 欧美在线国产精品| 国产欧美一区二区三区在线看蜜臀| 国产日韩欧美精品综合| 国产毛片精品国产一区二区三区| 亚洲国产精品嫩草影院| 伊人男人综合视频网| 亚洲麻豆视频| 亚洲午夜av电影| 久久综合网色—综合色88| 亚洲高清在线观看一区| 国产精品一区久久久久| 性色av香蕉一区二区| 国产精品久久国产精麻豆99网站| 国产精品啊v在线| 亚洲欧美日韩国产一区二区| 久久精品综合一区| 亚洲男女自偷自拍图片另类| 欧美日韩国产页| 国内久久视频| 亚洲精选在线| 久久青草福利网站| 久久久精品久久久久| 亚洲激情影院| 国产精品久久久亚洲一区| 欧美成人一区二区三区在线观看| 亚洲尤物在线| 欧美日本乱大交xxxxx| 午夜在线成人av| 欧美性大战xxxxx久久久| 欧美一区二区三区免费看| 国产午夜精品一区二区三区视频| 欧美人与禽性xxxxx杂性| 欧美顶级少妇做爰| 欧美日韩中文字幕精品| 久久人人97超碰精品888| 欧美精品久久久久a| 国产午夜精品视频免费不卡69堂| 亚洲伦理一区| 亚洲视频日本| 欧美日韩中文精品| 一本久道久久综合中文字幕| 欧美综合国产精品久久丁香| 国产精品视频99| 欧美激情久久久久| 国产亚洲精品高潮| 国产精品99久久久久久久久| 亚洲第一黄色网| 国产精品美女久久久久aⅴ国产馆| 久久久久国产一区二区三区四区| 宅男噜噜噜66一区二区66| 久久在线免费视频| 99亚洲伊人久久精品影院红桃| 欧美日韩中文字幕| 亚洲激情视频网站| 久久久综合网站| 国产精品国产成人国产三级| 99视频热这里只有精品免费| 久久视频精品在线|