日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

MA2552代做、代寫Matlab編程語言

時間:2023-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


MA2552 Introduction to Computing (DLI) 2023/24

Computational Project

Aims and Intended Learning Outcomes

The aims of the Project are to describe methods for solving given computational problems, develop and test Matlab code implementing the methods, and demonstrate application

of the code to solving a specific computational problem. In this Project, you be will be required to demonstrate

• ability to investigate a topic through guided independent research, using resources

available on the internet and/or in the library;

• understanding of the researched material;

• implementation of the described methods in Matlab;

• use of the implemented methods on test examples;

• ability to present the studied topic and your computations in a written Project Report.

Plagiarism and Declaration

• This report should be your independent work. You should not seek help from other

students or provide such help to other students. All sources you used in preparing your

report should be listed in the References section at the end of your report and referred

to as necessary throughout the report.

• Your Project Report must contain the following Declaration (after the title page):

DECLARATION

All sentences or passages quoted in this Project Report from other people’s work have

been specifically acknowledged by clear and specific cross referencing to author, work and

page(s), or website link. I understand that failure to do so amounts to plagiarism and

will be considered grounds for failure in this module and the degree as a whole.

Name:

Signed: (name, if submitted electronically)

Date:

Project Report

The report should be about 6-8 pages long, written in Word or Latex. Equations should

be properly formatted and cross-referenced, if necessary. All the code should be included in

the report. Copy and paste from MATLAB Editor or Command Window and choose ‘Courier

New’ or another fixed-width font. The Report should be submitted via Blackboard in a single

file (Word document or Adobe PDF) and contain answers to the following questions:

1

MA2552 Introduction to Computing (DLI) 2023/24

Part 0: Context

Let f(x) be a periodic function. The goal of this project is to implement a numerical method

for solving the following family of ordinary differential equations (O.D.E):

an

d

nu(x)

dxn

+ an−1

d

n−1u(x)

dxn−1

+ . . . + a0u(x) = f(x), (1)

where ak, k = 0, · · · , n, are real-valued constants. The differential equation is complemented

with periodic boundary conditions:

d

ku(−π)

dxk

=

d

ku(π)

dxk

for k = 0, · · · , n − 1.

We aim to solve this problem using a trigonometric function expansion.

Part 1: Basis of trigonometric functions

Let u(x) be a periodic function with period 2π. There exist coefficients α0, α1, α2, . . ., and

β1, β2, . . . such that

u(x) = X∞

k=0

αk cos(kx) +X∞

1

βk sin(kx).

The coefficients αk and βk can be found using the following orthogonality properties:

Z π

−π

cos(kx) sin(nx) dx = 0, for any k, n

Z π

−π

cos(kx) cos(nx) dx =

ɽ**;?**0;

ɽ**;?**1;

0 if k ̸= n

π if k = n ̸= 0

2π if k = n = 0.

Z π

−π

sin(kx) sin(nx) dx =

(

0 if k ̸= n

π if k = n ̸= 0.

1. Implement a function that takes as an input two function handles f and g, and an

array x, and outputs the integral

1

π

Z π

−π

f(x)g(x) dx,

using your own implementation of the Simpson’s rule scheme. Corroborate numerically

the orthogonality properties above for different values of k and n.

2. Show that

αk =

(

1

π

R π

−π

u(x) cos(kx) dx if k ̸= 0

1

R π

−π

u(x) dx if k = 0

βk =

1

π

Z π

−π

u(x) sin(kx) dx.

2

MA2552 Introduction to Computing (DLI) 2023/24

3. Using question 1 and 2, write a function that given a function handle u and an integer

m, outputs the array [α0, α1 . . . , αm, β1, . . . , βm].

4. Write a function that given an array [α0, α1 . . . , αm, β1, . . . , βm], outputs (in the form

of an array) the truncated series

um(x) := Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx), (2)

where x is a linspace array on the interval [−π, π].

5. Using the function from question 3, compute the truncated series um(x) of the following

functions:

• u(x) = sin3

(x)

• u(x) = |x|

• u(x) = (

x + π, for x ∈ [−π, 0]

x − π, for x ∈ (0, π]

,

and using question 4, plot u(x) and um(x) for different values of m.

6. Carry out a study of the error between u(x) and um(x) for ∥u(x)−um(x)∥p with p = 2

and then with p = ∞. What do you observe?

Part 2: Solving the O.D.E

Any given periodic function u(x) can be well approximated by its truncate series expansion (2) if m is large enough. Thus, to solve the ordinary differential equation (1)

one can approximate u(x) by um(x):

u(x) ≈

Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx),

Since um(x) is completely determined by its coefficients [α0, α1 . . . , αm, β1, . . . , βm],

to solve (1) numerically, one could build a system of equations for determining these

coefficients.

7. Explain why under the above approximation, the boundary conditions of (1) are automatically satisfied.

8. We have that

dum(x)

dx =

Xm

k=0

γk cos(kx) +Xm

k=1

ηk sin(kx)

Write a function that takes as input the integer m, and outputs a square matrix D that

maps the coefficients [α0, . . . , αm, β1, . . . , βm] to the coefficients [γ0, . . . , γm, η1, . . . , ηm].

3

MA2552 Introduction to Computing (DLI) 2023/24

9. Write a function that given a function handler f, an integer m, and the constants

ak, solves the O.D.E. (1). Note that some systems might have an infinite number of

solutions. In that case your function should be able identify such cases.

10. u(x) = cos(sin(x)) is the exact solution for f(x) = sin(x) sin(sin(x))−cos(sin(x)) (cos2

(x) + 1),

with a2 = 1, a0 = −1 and ak = 0 otherwise. Plot the p = 2 error between your numerical solution and u(x) for m = 1, 2, . . .. Use a log-scale for the y-axis. At what rate

does your numerical solution converge to the exact solution?

11. Show your numerical solution for different f(x) and different ak of your choice.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫CE335編程、代做Python,C++程序設計
  • 下一篇:COMP528代寫、代做c/c++編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        午夜在线一区二区| 亚洲综合二区| 亚洲在线视频观看| 亚洲日本电影在线| 国产午夜精品一区理论片飘花| 精品粉嫩aⅴ一区二区三区四区| 亚洲精品一区在线观看| 国产欧美精品日韩区二区麻豆天美| 欧美人与性动交cc0o| 亚洲欧美日韩在线| 永久免费毛片在线播放不卡| 欧美激情视频一区二区三区免费| 欧美福利视频一区| 在线观看欧美黄色| 久久精品久久99精品久久| 欧美激情第二页| 激情久久久久久久| 黑人巨大精品欧美一区二区小视频| 美女视频黄 久久| 日韩视频免费看| 亚洲女人小视频在线观看| 亚洲国产精品v| 欧美sm重口味系列视频在线观看| 亚洲欧美日韩国产另类专区| 国产精品超碰97尤物18| 一区二区三区国产| 国产一区二区精品在线观看| 亚洲欧洲午夜| 国产欧美日韩中文字幕在线| 亚洲伦理在线观看| 午夜精品免费在线| 欧美一区永久视频免费观看| 亚洲第一视频| 国产精品国产亚洲精品看不卡15| 国产一区二区久久| 国产精品自拍一区| 久久精品国产欧美激情| 欧美一区午夜视频在线观看| 日韩亚洲国产精品| 亚洲精选一区| 国产亚洲精品久久飘花| 亚洲一区国产精品| 国产精品国码视频| 国产精品毛片高清在线完整版| 亚洲欧美影音先锋| 欧美精品97| 国产综合色在线视频区| 精品成人久久| 国产精品v欧美精品∨日韩| 亚洲国产三级网| 蜜臀av在线播放一区二区三区| 老司机67194精品线观看| 欧美在线免费视频| 欧美性猛交一区二区三区精品| 欧美成人一二三| 亚洲综合第一| 亚洲女同性videos| 亚洲视频在线免费观看| 国产一区香蕉久久| 国产精品你懂的在线欣赏| 国产性猛交xxxx免费看久久| 亚洲一区二区在线观看视频| 国外成人免费视频| 欧美精品首页| 亚洲国产一区二区精品专区| 欧美深夜福利| 午夜久久久久久久久久一区二区| 狠狠入ady亚洲精品经典电影| 欧美日韩中文字幕精品| 亚洲视频在线视频| 欧美国产1区2区| 国产精品海角社区在线观看| 欧美日韩在线另类| 欧美日韩中文在线观看| 麻豆免费精品视频| 亚洲免费观看| 激情小说亚洲一区| 一区二区三区视频免费在线观看| 一区在线播放| 黄色成人在线网站| 亚洲国产cao| 国产亚洲精品bv在线观看| 在线性视频日韩欧美| 国产精品视频你懂的| 亚洲国产裸拍裸体视频在线观看乱了中文| 亚洲一区二区三区中文字幕在线| 欧美黄色免费网站| 美女国内精品自产拍在线播放| 亚洲素人在线| 久久一区亚洲| 午夜精品久久久久久99热软件| 国产精品久久国产精品99gif| 欧美日本高清一区| 久久久噜久噜久久综合| 久久影院午夜论| 在线亚洲精品福利网址导航| 国产精品欧美久久久久无广告| 国产精品久久久亚洲一区| 国产欧美 在线欧美| 欧美日韩国产在线看| 欧美精品免费看| 美女网站在线免费欧美精品| 久久国内精品自在自线400部| 欧美手机在线| 欧美自拍偷拍| 亚洲国产成人91精品| 国产亚洲人成a一在线v站| 欧美了一区在线观看| 国产精品久久久久久久久久久久久| 国外成人在线视频网站| 久久夜色精品一区| 中文国产成人精品久久一| 一区二区三区成人精品| 午夜久久久久| 久久久国产成人精品| 亚洲电影激情视频网站| 国产精品有限公司| 欧美女同在线视频| 欧美国产日韩亚洲一区| 久久人人精品| 欧美精品一区二区三区蜜臀| 久久久999精品免费| 欧美精品一区二区在线播放| 欧美日韩一区不卡| 国产亚洲激情在线| 欧美激情一区二区三级高清视频| 国产精品成人在线观看| 国产亚洲视频在线| 久久欧美肥婆一二区| 美日韩精品视频免费看| 老司机一区二区三区| 欧美粗暴jizz性欧美20| 久久久精品tv| 国产精品五月天| 韩国一区二区三区美女美女秀| 91久久精品一区二区别| 久久亚裔精品欧美| 欧美黄色大片网站| 日韩午夜免费| 久久精品99无色码中文字幕| 韩国v欧美v日本v亚洲v| 久久精品人人做人人爽电影蜜月| 亚洲婷婷在线| 毛片基地黄久久久久久天堂| 欧美激情一区二区三区高清视频| 亚洲伊人一本大道中文字幕| 欧美成人午夜激情| 欧美日韩在线精品| 久久国产精品99久久久久久老狼| 一区二区三区日韩精品| 欧美日韩国产成人在线免费| 亚洲欧洲精品一区二区精品久久久| 欧美一区久久| 欧美日韩免费观看一区=区三区| 精品不卡一区二区三区| 美女视频网站黄色亚洲| 9人人澡人人爽人人精品| 久久成人久久爱| 尤妮丝一区二区裸体视频| 亚洲国产视频一区| 欧美日韩高清在线| 久久亚裔精品欧美| 欧美日韩精品在线视频| 欧美日韩福利在线观看|