<em id="rw4ev"></em>

      <tr id="rw4ev"></tr>

      <nav id="rw4ev"></nav>
      <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
      合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

      MA2552代做、代寫Matlab編程語言

      時間:2023-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


      MA2552 Introduction to Computing (DLI) 2023/24

      Computational Project

      Aims and Intended Learning Outcomes

      The aims of the Project are to describe methods for solving given computational problems, develop and test Matlab code implementing the methods, and demonstrate application

      of the code to solving a specific computational problem. In this Project, you be will be required to demonstrate

      • ability to investigate a topic through guided independent research, using resources

      available on the internet and/or in the library;

      • understanding of the researched material;

      • implementation of the described methods in Matlab;

      • use of the implemented methods on test examples;

      • ability to present the studied topic and your computations in a written Project Report.

      Plagiarism and Declaration

      • This report should be your independent work. You should not seek help from other

      students or provide such help to other students. All sources you used in preparing your

      report should be listed in the References section at the end of your report and referred

      to as necessary throughout the report.

      • Your Project Report must contain the following Declaration (after the title page):

      DECLARATION

      All sentences or passages quoted in this Project Report from other people’s work have

      been specifically acknowledged by clear and specific cross referencing to author, work and

      page(s), or website link. I understand that failure to do so amounts to plagiarism and

      will be considered grounds for failure in this module and the degree as a whole.

      Name:

      Signed: (name, if submitted electronically)

      Date:

      Project Report

      The report should be about 6-8 pages long, written in Word or Latex. Equations should

      be properly formatted and cross-referenced, if necessary. All the code should be included in

      the report. Copy and paste from MATLAB Editor or Command Window and choose ‘Courier

      New’ or another fixed-width font. The Report should be submitted via Blackboard in a single

      file (Word document or Adobe PDF) and contain answers to the following questions:

      1

      MA2552 Introduction to Computing (DLI) 2023/24

      Part 0: Context

      Let f(x) be a periodic function. The goal of this project is to implement a numerical method

      for solving the following family of ordinary differential equations (O.D.E):

      an

      d

      nu(x)

      dxn

      + an−1

      d

      n−1u(x)

      dxn−1

      + . . . + a0u(x) = f(x), (1)

      where ak, k = 0, · · · , n, are real-valued constants. The differential equation is complemented

      with periodic boundary conditions:

      d

      ku(−π)

      dxk

      =

      d

      ku(π)

      dxk

      for k = 0, · · · , n − 1.

      We aim to solve this problem using a trigonometric function expansion.

      Part 1: Basis of trigonometric functions

      Let u(x) be a periodic function with period 2π. There exist coefficients α0, α1, α2, . . ., and

      β1, β2, . . . such that

      u(x) = X∞

      k=0

      αk cos(kx) +X∞

      1

      βk sin(kx).

      The coefficients αk and βk can be found using the following orthogonality properties:

      Z π

      −π

      cos(kx) sin(nx) dx = 0, for any k, n

      Z π

      −π

      cos(kx) cos(nx) dx =

      ɽ**;?**0;

      ɽ**;?**1;

      0 if k ̸= n

      π if k = n ̸= 0

      2π if k = n = 0.

      Z π

      −π

      sin(kx) sin(nx) dx =

      (

      0 if k ̸= n

      π if k = n ̸= 0.

      1. Implement a function that takes as an input two function handles f and g, and an

      array x, and outputs the integral

      1

      π

      Z π

      −π

      f(x)g(x) dx,

      using your own implementation of the Simpson’s rule scheme. Corroborate numerically

      the orthogonality properties above for different values of k and n.

      2. Show that

      αk =

      (

      1

      π

      R π

      −π

      u(x) cos(kx) dx if k ̸= 0

      1

      R π

      −π

      u(x) dx if k = 0

      βk =

      1

      π

      Z π

      −π

      u(x) sin(kx) dx.

      2

      MA2552 Introduction to Computing (DLI) 2023/24

      3. Using question 1 and 2, write a function that given a function handle u and an integer

      m, outputs the array [α0, α1 . . . , αm, β1, . . . , βm].

      4. Write a function that given an array [α0, α1 . . . , αm, β1, . . . , βm], outputs (in the form

      of an array) the truncated series

      um(x) := Xm

      k=0

      αk cos(kx) +Xm

      k=1

      βk sin(kx), (2)

      where x is a linspace array on the interval [−π, π].

      5. Using the function from question 3, compute the truncated series um(x) of the following

      functions:

      • u(x) = sin3

      (x)

      • u(x) = |x|

      • u(x) = (

      x + π, for x ∈ [−π, 0]

      x − π, for x ∈ (0, π]

      ,

      and using question 4, plot u(x) and um(x) for different values of m.

      6. Carry out a study of the error between u(x) and um(x) for ∥u(x)−um(x)∥p with p = 2

      and then with p = ∞. What do you observe?

      Part 2: Solving the O.D.E

      Any given periodic function u(x) can be well approximated by its truncate series expansion (2) if m is large enough. Thus, to solve the ordinary differential equation (1)

      one can approximate u(x) by um(x):

      u(x) ≈

      Xm

      k=0

      αk cos(kx) +Xm

      k=1

      βk sin(kx),

      Since um(x) is completely determined by its coefficients [α0, α1 . . . , αm, β1, . . . , βm],

      to solve (1) numerically, one could build a system of equations for determining these

      coefficients.

      7. Explain why under the above approximation, the boundary conditions of (1) are automatically satisfied.

      8. We have that

      dum(x)

      dx =

      Xm

      k=0

      γk cos(kx) +Xm

      k=1

      ηk sin(kx)

      Write a function that takes as input the integer m, and outputs a square matrix D that

      maps the coefficients [α0, . . . , αm, β1, . . . , βm] to the coefficients [γ0, . . . , γm, η1, . . . , ηm].

      3

      MA2552 Introduction to Computing (DLI) 2023/24

      9. Write a function that given a function handler f, an integer m, and the constants

      ak, solves the O.D.E. (1). Note that some systems might have an infinite number of

      solutions. In that case your function should be able identify such cases.

      10. u(x) = cos(sin(x)) is the exact solution for f(x) = sin(x) sin(sin(x))−cos(sin(x)) (cos2

      (x) + 1),

      with a2 = 1, a0 = −1 and ak = 0 otherwise. Plot the p = 2 error between your numerical solution and u(x) for m = 1, 2, . . .. Use a log-scale for the y-axis. At what rate

      does your numerical solution converge to the exact solution?

      11. Show your numerical solution for different f(x) and different ak of your choice.

      請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

       

      掃一掃在手機打開當前頁
    1. 上一篇:代寫CE335編程、代做Python,C++程序設計
    2. 下一篇:COMP528代寫、代做c/c++編程設計
    3. 無相關信息
      合肥生活資訊

      合肥圖文信息
      挖掘機濾芯提升發動機性能
      挖掘機濾芯提升發動機性能
      戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
      戴納斯帝壁掛爐全國售后服務電話24小時官網
      菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
      菲斯曼壁掛爐全國統一400售后維修服務電話2
      美的熱水器售后服務技術咨詢電話全國24小時客服熱線
      美的熱水器售后服務技術咨詢電話全國24小時
      海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
      海信羅馬假日洗衣機亮相AWE 復古美學與現代
      合肥機場巴士4號線
      合肥機場巴士4號線
      合肥機場巴士3號線
      合肥機場巴士3號線
      合肥機場巴士2號線
      合肥機場巴士2號線
    4. 幣安app官網下載 短信驗證碼 丁香花影院

      關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

      Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
      ICP備06013414號-3 公安備 42010502001045

      成人久久18免费网站入口