日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做EF5070、代寫c/c++編程設計

時間:2023-11-30  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Financial Econometrics (EF5070) 
1
Financial Econometrics (EF5070) 2023/2024 Semester A
Assignment 3
• The assignment is to be done individually.
• Your solution should consist of one single pdf file and one single R file.
• Clearly state your name, SIS ID, and the course name on the cover page of your pdf file.
• In your pdf file, indicate how you solved each problem and show intermediate steps. It
is advised to show numerical results in the form of small tables. Make your R code easyto-read. Use explanatory comments (after a # character) in your R file if necessary.
Overly lengthy solutions will receive low marks.
• You need to upload your solution (i.e., the one pdf file and the one R file) on the Canvas
page of the course (Assignments → Assignment 3). The deadline for uploading your
solution is 2 December, 2023 (Saturday), 11:59 p.m.
Financial Econometrics (EF5070) Dr. Ferenc Horvath
2
Exercise 1.
The file a3data.txt contains the daily values of a fictional total return index.
• Calculate the daily non-annualized continuously-compounded (n.a.c.c.) net returns.
• Use the BDS test to determine whether the returns are realizations of i.i.d. random
variables.
• Plot the ACF of the returns and of the squared returns. Do these plots confirm your
conclusion which you obtained by using the BDS test?
• Based on the Akaike information criterion, fit an AR(p) model to the return time series
with w**1; ≤ 5. Check whether the model residuals are realisations of a white noise or not
by plotting the ACF of the residuals and of the squared residuals, and by performing
the BDS test on the residuals.
• Perform the RESET test, Keenan’s test, Tsay’s F test, and the threshold test to determine
whether the daily n.a.c.c. net returns indeed follow an AR(p) model, where p is equal
to the number of lags which you determined in the previous point based on the Akaike
information criteria. Is your conclusion (based on the four tests) regarding the validity
of an AR(p) model in accordance with your conclusions regarding whether the residuals
in the previous point are realisations of a white noise?
• For each daily n.a.c.c. net return, create a dummy variable which takes the value 1 if
the return was positive and the value zero otherwise. Build a neural network model
where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
o Using the last 1000 observations, forecast the signs of the next-period returns.
Determine the mean absolute error of your forecast. (I.e., in how many percent
of the cases did your model correctly forecast the sign of the next-period return
and in how many percent of the cases did it make a mistake in forecasting the
sign?)
Financial Econometrics (EF5070) Dr. Ferenc Horvath
3
Exercise 2.
The file HSTRI.txt contains the Hang Seng Total Return Index (which is the major stock market
index of the Hong Kong Stock Exchange) values from 3 January, 19** to 22 September, 2023.
• Calculate the daily non-annualized continuously-compounded (n.a.c.c.) net returns.
• For each daily n.a.c.c. net return, create a dummy variable which takes the value 1 if
the return was positive and the value zero otherwise. Build a neural network model
where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
o Using the last 1000 observations, forecast the signs of the next-period returns.
Determine the mean absolute error of your forecast. (I.e., in how many percent
of the cases did your model correctly forecast the sign of the next-period return
and in how many percent of the cases did it make a mistake in forecasting the
sign?) Is this result in accordance with the Efficient Market Hypothesis,
according to which (roughly speaking) returns are not predictable?
Financial Econometrics (EF5070) Dr. Ferenc Horvath
4
Exercise 3.
Consider again the daily n.a.c.c. net returns from Exercise 2.
• Calculate the standard deviation of the first 7**4 returns.
• Create a dummy variable for each observed return such that the dummy variable takes
the value of 1 if the absolute value of the return is greater than the previously
calculated standard deviation and it takes the value of zero otherwise.
• Build a neural network model where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
• Using the last 1000 observations, forecast whether the absolute value of the nextperiod return will be higher or not than the earlier calculated standard deviation.
Determine the mean absolute error of your forecast. (I.e., in how many percent of the
cases was your model forecast correct and in how many percent of the cases was it
incorrect?) Is this result in accordance with the concept of volatility clustering?
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代寫ecs36c 有向圖程序
  • 下一篇:PX390編程代做、C/C++程序語言代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        最新成人av在线| 永久免费毛片在线播放不卡| 久久看片网站| 亚洲第一天堂无码专区| 亚洲激情在线| 久久午夜羞羞影院免费观看| 欧美日韩在线播放| 欧美日韩精品一区二区天天拍小说| 欧美日韩精品高清| 亚洲国产美女精品久久久久∴| 欧美在线综合视频| 国产亚洲欧美日韩一区二区| 一本久道久久久| 国产一区在线观看视频| 国产精品婷婷午夜在线观看| 国产日韩欧美91| 亚洲人成网站999久久久综合| 亚洲精品网址在线观看| 老鸭窝91久久精品色噜噜导演| 亚洲伦理自拍| 精品盗摄一区二区三区| 国模叶桐国产精品一区| 久久久亚洲综合| 亚洲一级高清| 性欧美大战久久久久久久免费观看| av成人免费在线| 国产精品久久久久久久久久久久久久| 欧美99在线视频观看| 久久免费视频网站| 夜夜嗨av一区二区三区中文字幕| 一本一道久久综合狠狠老精东影业| 欧美激情1区2区3区| 亚洲综合色婷婷| 亚洲第一视频网站| 在线观看的日韩av| 国产一二精品视频| 国产色婷婷国产综合在线理论片a| 1024亚洲| 欧美伊人久久久久久午夜久久久久| 国产亚洲成年网址在线观看| 亚洲精品在线观看免费| 国产区日韩欧美| 国产欧美日韩不卡| 欧美日韩激情小视频| 欧美日韩精品久久| 国产精品日韩电影| 午夜精品网站| 国产精品卡一卡二卡三| 亚洲精品婷婷| 欧美激情va永久在线播放| 国语精品中文字幕| 亚洲巨乳在线| 精品999网站| 亚洲国产精品悠悠久久琪琪| 欧美精品一区二区三区在线播放| 亚洲人体大胆视频| 欧美日韩免费一区二区三区| 久久精品夜夜夜夜久久| 久久精品在线播放| 影音先锋在线一区| 欧美日韩国产综合久久| 日韩亚洲国产精品| 欧美日韩在线播放三区| 国产日产亚洲精品系列| 欧美韩日一区| 国产午夜精品在线| 国产精品久久久久久久午夜片| 国产自产v一区二区三区c| 亚洲激情电影在线| 米奇777在线欧美播放| 欧美成人a∨高清免费观看| 亚洲精品字幕| 亚洲精品乱码久久久久久日本蜜臀| 久久av在线| 免费久久99精品国产自| 欧美午夜不卡视频| 国产资源精品在线观看| 亚洲欧美日韩综合一区| 亚洲第一区在线| 国产亚洲精品bv在线观看| 午夜在线视频观看日韩17c| 亚洲一区二区在线观看视频| 亚洲日本免费电影| 亚洲欧洲日本在线| 国产一级精品aaaaa看| 国产精品劲爆视频| 欧美成人亚洲成人| 老司机精品久久| 伊人伊人伊人久久| 你懂的国产精品| 开元免费观看欧美电视剧网站| 另类成人小视频在线| 欧美成人在线免费视频| 国产区日韩欧美| 国内不卡一区二区三区| 一区二区日本视频| 欧美电影在线| 另类酷文…触手系列精品集v1小说| 免费亚洲电影在线观看| 国产精品看片你懂得| 亚洲免费在线观看视频| 在线免费观看日本欧美| 国产一区二区日韩精品欧美精品| 夜夜嗨av一区二区三区中文字幕| 亚洲国产美女精品久久久久∴| 狠狠色丁香久久综合频道| 国产女人aaa级久久久级| 国内揄拍国内精品少妇国语| 日韩亚洲精品电影| 国产精品久久久久久户外露出| 国产日韩欧美电影在线观看| 久久www成人_看片免费不卡| 国户精品久久久久久久久久久不卡| 欧美成人四级电影| 亚洲国产天堂久久综合| 国产精品国产自产拍高清av王其| 午夜精品影院在线观看| 有坂深雪在线一区| 激情欧美一区二区三区在线观看| 国内精品模特av私拍在线观看| 9久re热视频在线精品| 伊甸园精品99久久久久久| 亚洲人成毛片在线播放女女| 在线国产日韩| 欧美午夜宅男影院在线观看| 久久精品国产久精国产思思| 亚洲欧美精品在线| 欧美怡红院视频一区二区三区| 91久久嫩草影院一区二区| 欧美日韩亚洲成人| 女同性一区二区三区人了人一| 亚洲麻豆av| 久久久亚洲精品一区二区三区| 久久gogo国模啪啪人体图| 麻豆成人av| 欧美另类99xxxxx| 欧美日韩ab片| 亚洲高清激情| 欧美日韩国产在线播放网站| 欧美日韩国产一级| 亚洲第一级黄色片| 巨胸喷奶水www久久久免费动漫| 久久精品人人| 欧美中文字幕在线| 久久久国产精品亚洲一区| 国内精品久久久久国产盗摄免费观看完整版| 国产一区视频在线观看免费| 亚洲三级国产| 亚洲精品资源美女情侣酒店| 亚洲在线成人精品| 欧美剧在线观看| 免费人成网站在线观看欧美高清| 99riav1国产精品视频| 午夜精品在线视频| 久久精品午夜| 亚洲一区美女视频在线观看免费| 欧美一级久久久久久久大片| 欧美一区二区性| 老司机凹凸av亚洲导航| 国产精品久久久久久久久免费| 性久久久久久久久久久久| 在线看欧美视频| 在线观看日韩www视频免费| 欧美日韩精品是欧美日韩精品|