日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CHC6089、代寫 java/c++程序語言

時間:2023-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯




OBU COMPUTING
Module CHC6089: Machine Learning:  Semester 1, 2023/24
Coursework 1: Experimental Comparison of Different Supervised Machine Learning Algorithms Using UCI Dataset
 
For this coursework 1, you are required to evaluate and compare fivesupervised machine learning algorithms using UCI dataset in Python programming language methods. Every student is expected to have their individual dataset according to their class grouping. This coursework 1 is worth 30% of the module mark.
Learning Outcomes
1. Evaluate and articulate the issues and challenges in machine learning, including model selection, complexity and feature selection.
2. Demonstrate a working knowledge of the variety of mathematical techniques normally adopted for machine learning problems, and of their application to creating effective solutions.
3. Critically evaluate the performance and drawbacks of a proposed solution to a machine learning problem.
4. Create solutions to machine learning problems using appropriate software.
Data set
 
This coursework is designed to allow you to work freely and make sure that your report is unique by avoiding collusions.  No two students ought to possess an identical or comparable dataset. Each student will receive a different UCI dataset at random, and you will need to download it from the student website as designated by the module leader. The dataset that you have been given must be used and followed strictly. The purpose of this instruction is to encourage students to work independently, avoid cheating and collusion; any infringement will result in a deduction of twenty points.  
Machine Learning and Evaluation
For this coursework you will evaluate five supervised learningmethods on UCI dataset in Python. The first algorithm is linear regression, second algorithm is logistic regression, third algorithm is neural network, fourth model is decision tree and the fifth model is k-nearest neighbour. 
You may implement these algorithms using the inbuilt classifiers; however you are highly encouraged to implement the functionsyourself to train the classifiers. More so, inbuilt function for error measurement is not allowed.
 
The objective of this coursework is to experimentally investigate which supervised algorithm is best suited for the dataset, and whichparameter values are best. In order to answer this question you need to evaluate the error measurement rate and any other performance evaluation metrics you can provide.
 
Experiments must at least show:
• The training and test error for all the models.
• Develop appropriate data handling code. 
• The use of inbuilt error measurement is not allowed for this coursework.
• Experimentally compare different hyper-parameters.
• Provide a visualization of how data was classified for each method (or parameter value), for example based on a scatter plot of two of the features. You are allowed to utilize any inbuilt visualization routines you like, such as plot, or scatter. 
The entire experiment must be submitted as jupyter notebook script file (.ipynb) from which all results and figures can be reproduced.
 
 
 
Report structure and assessment (30% of module mark)
1) Write a brief introduction that introduces (5%)
a) Provide a brief introduction of the supervised learning problem as it relates to real-life challenges.
b) Give details of the dataset and other information that describe the dataset.
c) Briefly explain the five models as well as possible parameters.
d) Briefly explain how the models can be individually applied to the dataset.
 
2) Realize and describe the experiment that evaluates the error measurement rate for all the models on your specific dataset. Explain the choice (or necessity) of your error measurement method. Make sure you use appropriate illustrations and diagrams as well as statistics. What other evaluation metrics than just theerror measurement method could be important to decide which method is most suited? More so, discuss the result of the chosen evaluate metrics.  (20%)
 
3) Write a brief conclusion on the results. Mention the algorithm that provides the best result and mentioned the hyper-parameters used. Also, provide a comparison of all the model performance results. (5%)
 
Submission
 
Submit your report following the report structure provided above. Include step-by-step descriptions of the tasks you performed and the results obtained during the experiment. Ensure that your report is well-organized, clearly written, and includes all the necessary evaluation metrics and graphs as specified in the coursework requirements. The submission deadline is week 9, November 2023, by 16:00. Late submissions may incur penalties of up to 10 marks reduction, so make sure to plan your work accordingly. Failure to submit your coursework will result to Zero Mark. In the case of exceptional circumstances, contact the Award Administrator in advance.
 
Submission Format:
The coursework assignment submitted should be compressed into a .zip or .rar file, the following files should be contained in the compressed file:
▪ A report as a Microsoft Word document.
   File name format: ‘Student ID_MLCoursework1_Report.docx’
▪ A .zip or .rar file containing the report experiments: all the program’s sources, including the code, graphs, model architecture, results, and diagrams from the experiments. All implementation source code must be submitted as a Jupyter Notebook script (.ipynb) for easy reproducibility. Your final zipped folder should be submitted digitally to the student website.
 請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP528、代做 Python ,java 編程
  • 下一篇:COMP24011 代做、代寫 java/Python 程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        伊人久久噜噜噜躁狠狠躁| 欧美日韩美女一区二区| 亚洲自拍三区| 国产乱子伦一区二区三区国色天香| 欧美涩涩网站| 蜜桃av久久久亚洲精品| 另类综合日韩欧美亚洲| 欧美激情综合五月色丁香| 欧美人与性动交α欧美精品济南到| 欧美日韩蜜桃| 麻豆9191精品国产| 亚洲精品欧美日韩| 一区二区三区欧美视频| 久久精品一区二区三区中文字幕| 欧美日韩成人| 欧美四级伦理在线| 欧美激情综合色综合啪啪| 欧美成人网在线| 久久久久九九九| 亚洲一区二区三区在线观看视频| 国产综合久久| 欧美另类一区二区三区| 久久亚洲精品中文字幕冲田杏梨| 欧美激情一区二区三区高清视频| 羞羞漫画18久久大片| 亚洲欧洲综合另类| 久久久久成人精品免费播放动漫| 洋洋av久久久久久久一区| 99国产精品久久| 国产精品久久一区二区三区| 亚洲国产老妈| 久热成人在线视频| 亚洲欧洲精品天堂一级| 亚洲午夜性刺激影院| 亚洲免费观看高清完整版在线观看熊| 国产精品综合视频| 美女日韩欧美| 欧美午夜不卡| 国产精品男女猛烈高潮激情| 国产精品腿扒开做爽爽爽挤奶网站| 亚洲在线1234| 欧美久久电影| 一区二区三区四区精品| 久久久美女艺术照精彩视频福利播放| 亚洲人成在线影院| 国产精品白丝黑袜喷水久久久| 亚洲国产电影| 国产精品主播| 亚洲视频一区二区免费在线观看| 欧美视频在线视频| 亚洲激情不卡| 免费成人小视频| 欧美一区二区三区免费观看| 性高湖久久久久久久久| 亚洲精品美女免费| 国产亚洲欧美日韩在线一区| 亚洲色图制服丝袜| 中文日韩在线视频| 亚洲午夜激情网页| 黑人巨大精品欧美一区二区| 国产精品制服诱惑| 麻豆精品一区二区av白丝在线| 国产欧美精品日韩精品| 欧美精品九九| 亚洲三级国产| 国产欧美日韩另类视频免费观看| 亚洲黄一区二区| 欧美久久婷婷综合色| 亚洲尤物视频在线| 精品成人一区二区三区四区| 国产自产在线视频一区| 欧美一区二区视频在线观看2020| 亚洲欧美在线网| 日韩午夜电影| 久久精彩免费视频| 国产精品日韩一区二区| 99综合精品| 国产目拍亚洲精品99久久精品| 国产精品视频一| 欧美护士18xxxxhd| 在线免费观看成人网| 欧美亚洲三区| 国产欧美日本一区视频| 亚洲国产欧美一区二区三区久久| 美女国产精品| 国产欧美一区二区精品婷婷| 亚洲欧美国产高清va在线播| 国产真实久久| 合欧美一区二区三区| 久久性天堂网| 欧美日韩在线影院| 狠狠色综合一区二区| 亚洲精品午夜精品| 久久精彩视频| 国产色视频一区| 欧美精品一区二区蜜臀亚洲| 欧美一区二区三区在线看| 国产精品推荐精品| 欧美11—12娇小xxxx| 欧美在线亚洲一区| 亚洲国产欧美在线人成| 久久午夜精品| 一个色综合导航| 欧美精品久久久久久久久老牛影院| 亚洲激情视频网站| 国模套图日韩精品一区二区| 国产精品欧美风情| 亚洲午夜久久久久久尤物| 亚洲国产精品久久久久久女王| 欧美高清日韩| 国产精品亚洲一区二区三区在线| 久久久精品国产一区二区三区| 久久精品99国产精品日本| 国产一区二区久久精品| 国产一区二区剧情av在线| 国产三级欧美三级| 影音先锋另类| 欧美va天堂va视频va在线| 韩国v欧美v日本v亚洲v| 久久精品一二三区| 欧美国产日韩一区| 在线午夜精品自拍| 亚洲欧洲一级| 国产精品丝袜91| 最新国产成人在线观看| 正在播放日韩| 亚洲风情亚aⅴ在线发布| 亚洲精品一区二区三区樱花| 亚洲第一黄网| 99热免费精品在线观看| 国产精品美女| 亚洲电影免费在线观看| 午夜精品久久久久久99热软件| 亚洲福利小视频| 亚洲人成77777在线观看网| 亚洲桃色在线一区| 国产女同一区二区| 欧美日韩福利在线观看| 国产曰批免费观看久久久| 国产精品自拍网站| 亚洲国产精品视频一区| 欧美国产日韩一区二区在线观看| 亚洲欧美在线视频观看| 篠田优中文在线播放第一区| 欧美日韩三级视频| 欧美大片va欧美在线播放| 久久久久久久久久久久久女国产乱| 国产自产在线视频一区| 欧美精品一区二区精品网| 一个色综合导航| 国产精品久久久久久久久久久久久| 国产精品乱码一区二区三区| 韩国欧美国产1区| 国产综合色产在线精品| 欧美成人午夜激情在线| 国产伦精品一区二区三区高清| 欧美激情视频一区二区三区不卡| 日韩视频在线一区二区三区| 午夜激情一区| 国产精品日韩欧美一区二区三区| 一区二区三区视频在线观看| 亚洲精品乱码久久久久久| 国产精品裸体一区二区三区| 欧美精品久久久久久久久老牛影院|