日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫COMP528、代做 Python ,java 編程

時間:2023-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman
Problem. This document explains the operations in detail, so you do not need previous
knowledge. You are encouraged to start this as soon as possible. Historically, as the dead?line nears, the queue times on Barkla grow as more submissions are tested. You are also
encouraged to use your spare time in the labs to receive help, and clarify any queries you
have regarding the assignment.
1 The Travelling Salesman Problem (TSP)
The travelling salesman problem is a problem that seeks to answer the following question:
‘Given a list of vertices and the distances between each pair of vertices, what is the shortest
possible route that visits each vertex exactly once and returns to the origin vertex?’.
(a) A fully connected graph (b) The shortest route around all vertices
Figure 1: An example of the travelling salesman problem
The travelling salesman problem is an NP-hard problem, that meaning an exact solution
cannot be solved in polynomial time. However, there are polynomial solutions that can
be used which give an approximation of the shortest route between all vertices. In this
assignment you are asked to implement 2 of these.
1.1 Terminology
We will call each point on the graph the vertex. There are 6 vertices in Figure 1.
We will call each connection between vertices the edge. There are 15 edges in Figure 1.z
We will call two vertices connected if they have an edge between them.
The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is
(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.
A partial tour is a tour that has not yet visited all the vertices.
202**024 1
COMP528
2 The solutions
2.1 Preparation of Solution
You are given a number of coordinate files with this format:
x, y
4.81263062**6921, 8.3**19930253777
2.**156816804616, 0.39593575612759
1.13649642931556, 2.2**59458630845
4.4**7**99682118, 2.9749120444**06
9.8****616851393, 9.107****070**
Figure 2: Format of a coord file
Each line is a coordinate for a vertex, with the x and y coordinate being separated by a
comma. You will need to convert this into a distance matrix.
0.000000 8.177698 7.099481 5.381919 5.0870**
8.177698 0.000000 2.577029 3.029315 11.138848
7.099481 2.577029 0.000000 3.426826 11.068045
5.381919 3.029315 3.426826 0.000000 8.139637
5.0870** 11.138848 11.068045 8.139637 0.000000
Figure 3: A distance matrix for Figure 2
To convert the coordinates to a distance matrix, you will need make use of the euclidean
distance formula.
d =
q (xi ? xj )
2 + (yi ? yj )
2
(1)
Figure 4: The euclidean distance formula
Where: d is the distance between 2 vertices vi and vj
, xi and yi are the coordinates of the
vertex vi
, and xj and yj are the coordinates of the vertex vj
.
202**024 2
COMP528
2.2 Cheapest Insertion
The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each
step, it looks for a vertex that hasn’t been visited, and inserts it between two connected
vertices in the tour, such that the cost of inserting it between the two connected vertices is
minimal.
These steps can be followed to implement the cheapest insertion algorithm. Assume that the
indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always
pick the lowest index or indices.
1. Start off with a vertex vi
.
Figure 5: Step 1 of Cheapest Insertion
2. Find a vertex vj such that the dist(vi
, vj ) is minimal, and create a partial tour (vi
, vj
, vi)
Figure 6: Step 2 of Cheapest Insertion
3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and
vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +
dist(vn+1, vk) ? dist(vn, vn+1) is minimal.
202**024 3
COMP528
Figure 7: Step 3 of Cheapest Insertion
4. Repeat step 3 until all vertices have been visited, and are in the tour.
Figure 8: Step 4 of Cheapest Insertion
Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11
2.3 Farthest Insertion
The farthest insertion algorithm begins with two connected vertices in a partial tour. Each
step, it checks for the farthest vertex not visited from any vertex within the partial tour, and
then inserts it between two connected vertices in the partial tour where the cost of inserting
it between the two connected vertices is minimal.
202**024 4
COMP528
These steps can be followed to implement the farthest insertion algorithm. Assume that the
indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always
pick the lowest index(indices).
1. Start off with a vertex vi
.
Figure 10: Step 1 of Farthest Insertion
2. Find a vertex vj such that dist(vi
, vj ) is maximal, and create a partial tour (vi
, vj
, vi).
Figure 11: Step 2 of Farthest Insertion
3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an
unvisited vertex vk such that dist(vn, vk) is maximal.
Figure 12: Step 3 of Farthest Insertion
202**024 5
COMP528
4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is
a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) ? dist(vn, vn+1) is
minimal.
Figure 13: Step 4 of Farthest Insertion
5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.
Figure 14: Step 3(2) of Farthest Insertion
Figure 15: Step 4(2) of Farthest Insertion
202**024 6
COMP528
Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11
3 Running your programs
Your program should be able to be ran like so:
./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >
Therefore, your program should accept a coordinate file, and an output file as arguments.
Note that C considers the first argument as the program executable.
Both implementations should read a coordinate file, run either cheapest insertion or farthest
insertion, and write the tour to the output file.
3.1 Provided Code
You are provided with code that can read the coordinate input from a file, and write the
final tour to a file. This is located in the file coordReader.c. You will need to include this
file when compiling your programs.
The function readNumOfCoords() takes a filename as a parameter and returns the number
of coordinates in the given file as an integer.
The function readCoords() takes the filename and the number of coordinates as parameters,
and returns the coordinates from a file and stores it in a two-dimensional array of doubles,
where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y
coordinate for the ith coordinate.
The function writeTourToFile() takes the tour, the tour length, and the output filename
as parameters, and writes the tour to the given file.
202**02**
University of Liverpool Continuous Assessment 1 COMP528
4 Instructions
? Implement a serial solution for the cheapest insertion and the farthest insertion. Name
these: cInsertion.c, fInsertion.c.
? Implement a parallel solution, using OpenMP, for the cheapest insertion and the far?thest insertion. Name these: ompcInsertion.c, ompfInsertion.c.
? Create a Makefile and call it ”Makefile” which performs as the list states below. With?out the Makefile, your code will not grade on CodeGrade (see more in section 5.1).
– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU com?piler
– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler
– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the
GNU compiler
– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the
GNU compiler
– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with
the Intel compiler
– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel
compiler.
? Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording
the time it takes to solve each one. Record the start time after you read from the
coordinates file, and the end time before you write to the output file. Do all testing
with the large data file.
? Plot a speedup plot with the speedup on the y-axis and the number of threads on the
x-axis for each parallel solution.
? Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of
threads on the x-axis for each parallel solution.
? Write a report that, for each solution, using no more than 1 page per solution,
describes: your serial version, and your parallelisation strategy
? In your report, include: the speedup and parallel efficiency plots, how you conducted
each measurement and calculation to plot these, and sreenshots of you compiling and
running your program. These do not contribute to the page limit
202**024 8
COMP528
? Your final submission should be uploaded onto CodeGrade. The files you
upload should be:
– Makefile
– cInsertion.c
– fInsertion.c
– ompcInsertion.c
– ompfInsertion.c
– report.pdf
5 Hints
You can also parallelise the conversion of the coordinates to the distance matrix.
When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...
int ? o n e d a r ra y = ( int ?) malloc ( numOfElements ? s i z e o f ( int ) ) ;
For a 2-D array:
int ?? twod a r ra y = ( int ??) malloc ( numOfElements ? s i z e o f ( int ? ) ) ;
for ( int i = 0 ; i < numOfElements ; i ++){
twod a r ra y [ i ] = ( int ?) malloc ( numOfElements ? s i z e o f ( int ) ) ;
}
5.1 Makefile
You are instructed to use a MakeFile to compile the code in any way you like. An example
of how to use a MakeFile can be used here:
{make command } : { t a r g e t f i l e s }
{compile command}
c i : c I n s e r t i o n . c coordReader . c
gcc c I n s e r t i o n . c coordReader . c ?o c i . exe ?lm
Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,
the compile command is automatically executed. It is worth noting, the compile command
must be indented. The target files are the files that must be present for the make command
to execute.
202**024 9
COMP528
6 Marking scheme
1 Code that compiles without errors or warnings 15%
2 Same numerical results for test cases 20%
3 Speedup plot 10%
4 Parallel Efficiency Plot 10%
5 Parallel efficiency up to ** threads 15%
6 Speed of program 10%
11 Clean code and comments 10%
12 Report 10%
Table 1: Marking scheme
7 Deadline
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:4CCS1CS1代做、代寫c/c++,Python程序
  • 下一篇:代做CHC6089、代寫 java/c++程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美私人网站| 欧美日本一区二区高清播放视频| 亚洲缚视频在线观看| 欧美激情黄色片| 女主播福利一区| 欧美一级黄色网| av成人免费在线| 亚洲国产日韩美| 国产性做久久久久久| 国产综合视频| 午夜精品亚洲| 国产精品久久久久久久app| 国产精品大片免费观看| 国产欧美大片| 99re6热只有精品免费观看| 欧美国产在线视频| 欧美一区二区啪啪| 好看的亚洲午夜视频在线| 久久精品亚洲一区| 国产精品成人午夜| 国产女主播一区| 久久久水蜜桃av免费网站| 国产精品va在线播放我和闺蜜| 亚洲高清av在线| 日韩亚洲欧美一区| 欧美日韩精品中文字幕| 欧美精品18| 麻豆精品视频在线观看视频| 久久亚洲综合色| 蜜臀av国产精品久久久久| 国产一区二区三区四区在线观看| 亚洲视频一二三| 国产精品福利网站| 国产精品福利在线| 国产午夜精品理论片a级探花| 欧美视频网站| 亚洲国产老妈| 亚洲精品一区二区三区蜜桃久| 最近中文字幕日韩精品| 国产精品视频第一区| 国产精品日韩精品欧美精品| 亚洲午夜电影网| 欧美在线精品免播放器视频| 国产精品毛片a∨一区二区三区| 午夜精品影院在线观看| 欧美日韩成人一区| 欧美专区在线| 亚洲欧美日韩精品久久奇米色影视| 亚洲女同性videos| 久久这里有精品15一区二区三区| 国产精品视频99| 亚洲一区二区三区高清| 一本色道久久综合亚洲精品婷婷| 国产欧美一区二区三区久久| 国产精品扒开腿做爽爽爽视频| 欧美.日韩.国产.一区.二区| 欧美性生交xxxxx久久久| 欧美激情中文不卡| 猛干欧美女孩| 久久久久国产免费免费| 一区二区欧美视频| 怡红院av一区二区三区| 国产伦精品一区二区| 国产伦精品一区二区三区免费| 欧美 日韩 国产一区二区在线视频| 欧美香蕉大胸在线视频观看| 国产在线播放一区二区三区| 国产一区二区三区久久精品| 麻豆成人小视频| 久久久国产午夜精品| 麻豆精品精品国产自在97香蕉| 亚洲欧洲美洲综合色网| 欧美日韩精品综合| 国产精品99久久99久久久二8| 你懂的国产精品永久在线| 国产一区二区久久精品| 久久国产精品亚洲77777| 欧美精品一区二区久久婷婷| 狠狠色狠狠色综合人人| 夜夜嗨一区二区| 亚洲最新视频在线播放| 国产精品久久久久久影院8一贰佰| 午夜亚洲视频| 久久久久久久一区二区三区| 欧美成人免费观看| 99精品免费网| 欧美—级a级欧美特级ar全黄| 欧美一区二区三区四区在线| 国产一区二区三区电影在线观看| 亚洲国产精品一区制服丝袜| 国产精品一区二区久久国产| 欧美三级精品| 国产精品呻吟| 国产精品免费观看在线| 欧美日韩免费| 国产乱肥老妇国产一区二| 一区在线电影| 国内揄拍国内精品久久| 野花国产精品入口| 国产亚洲欧美日韩在线一区| 欧美精品一区三区在线观看| 欧美精品久久99| 久久久精品五月天| 国内不卡一区二区三区| 国产精品自拍一区| 麻豆精品精华液| 99国产精品久久久久久久| 亚洲在线一区二区| 久久久www成人免费无遮挡大片| 最新成人av网站| 亚洲国产精品视频一区| 久久久夜夜夜| 亚洲伦伦在线| 欧美一级日韩一级| 亚洲国产一区二区视频| 亚洲精选视频免费看| 亚洲每日在线| 国产欧美日韩免费| 国产精品自在线| 国产免费一区二区三区香蕉精| 欧美日精品一区视频| 欧美**字幕| 欧美伦理一区二区| 亚洲午夜在线| 亚洲一区三区电影在线观看| 亚洲欧美一区二区三区在线| 久久全球大尺度高清视频| 亚洲靠逼com| 国产欧美69| 国产精品嫩草99av在线| 亚洲线精品一区二区三区八戒| 美脚丝袜一区二区三区在线观看| 久久视频精品在线| 欧美日韩视频在线一区二区| 亚洲电影免费观看高清完整版在线观看| 欧美91精品| 欧美尤物巨大精品爽| 欧美精品乱码久久久久久按摩| 国模吧视频一区| 欧美激情一区二区三区成人| 午夜日本精品| 日韩天堂在线视频| 亚洲一区二区三区中文字幕在线| 国产在线拍揄自揄视频不卡99| 欧美三级电影网| 欧美在线视频在线播放完整版免费观看| 国产精品视频最多的网站| 尤物精品国产第一福利三区| 久久成人免费网| 亚洲国产精品电影在线观看| 午夜在线观看欧美| 日韩系列欧美系列| 在线欧美电影| 在线观看视频一区二区| 亚洲宅男天堂在线观看无病毒| 午夜精品影院在线观看| 91久久国产精品91久久性色| 久久久99爱| 免费在线日韩av| 亚洲二区视频在线| 欧美色图一区二区三区| 久久久久久一区二区三区| 欧美色精品在线视频| 国产麻豆精品theporn|