日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫COMP528、代做 Python ,java 編程

時間:2023-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



In this assignment, you are asked to implement 2 algorithms for the Travelling Salesman
Problem. This document explains the operations in detail, so you do not need previous
knowledge. You are encouraged to start this as soon as possible. Historically, as the dead?line nears, the queue times on Barkla grow as more submissions are tested. You are also
encouraged to use your spare time in the labs to receive help, and clarify any queries you
have regarding the assignment.
1 The Travelling Salesman Problem (TSP)
The travelling salesman problem is a problem that seeks to answer the following question:
‘Given a list of vertices and the distances between each pair of vertices, what is the shortest
possible route that visits each vertex exactly once and returns to the origin vertex?’.
(a) A fully connected graph (b) The shortest route around all vertices
Figure 1: An example of the travelling salesman problem
The travelling salesman problem is an NP-hard problem, that meaning an exact solution
cannot be solved in polynomial time. However, there are polynomial solutions that can
be used which give an approximation of the shortest route between all vertices. In this
assignment you are asked to implement 2 of these.
1.1 Terminology
We will call each point on the graph the vertex. There are 6 vertices in Figure 1.
We will call each connection between vertices the edge. There are 15 edges in Figure 1.z
We will call two vertices connected if they have an edge between them.
The sequence of vertices that are visited is called the tour. The tour for Figure 1(b) is
(1, 3, 5, 6, 4, 2, 1). Note the tour always starts and ends at the origin vertex.
A partial tour is a tour that has not yet visited all the vertices.
202**024 1
COMP528
2 The solutions
2.1 Preparation of Solution
You are given a number of coordinate files with this format:
x, y
4.81263062**6921, 8.3**19930253777
2.**156816804616, 0.39593575612759
1.13649642931556, 2.2**59458630845
4.4**7**99682118, 2.9749120444**06
9.8****616851393, 9.107****070**
Figure 2: Format of a coord file
Each line is a coordinate for a vertex, with the x and y coordinate being separated by a
comma. You will need to convert this into a distance matrix.
0.000000 8.177698 7.099481 5.381919 5.0870**
8.177698 0.000000 2.577029 3.029315 11.138848
7.099481 2.577029 0.000000 3.426826 11.068045
5.381919 3.029315 3.426826 0.000000 8.139637
5.0870** 11.138848 11.068045 8.139637 0.000000
Figure 3: A distance matrix for Figure 2
To convert the coordinates to a distance matrix, you will need make use of the euclidean
distance formula.
d =
q (xi ? xj )
2 + (yi ? yj )
2
(1)
Figure 4: The euclidean distance formula
Where: d is the distance between 2 vertices vi and vj
, xi and yi are the coordinates of the
vertex vi
, and xj and yj are the coordinates of the vertex vj
.
202**024 2
COMP528
2.2 Cheapest Insertion
The cheapest insertion algorithm begins with two connected vertices in a partial tour. Each
step, it looks for a vertex that hasn’t been visited, and inserts it between two connected
vertices in the tour, such that the cost of inserting it between the two connected vertices is
minimal.
These steps can be followed to implement the cheapest insertion algorithm. Assume that the
indices i, j, k etc. are vertex labels, unless stated otherwise. In a tiebreak situation, always
pick the lowest index or indices.
1. Start off with a vertex vi
.
Figure 5: Step 1 of Cheapest Insertion
2. Find a vertex vj such that the dist(vi
, vj ) is minimal, and create a partial tour (vi
, vj
, vi)
Figure 6: Step 2 of Cheapest Insertion
3. Find two connected vertices (vn, vn+1), where n is a position in the partial tour, and
vk that has not been visited. Insert vk between vn and vn+1 such that dist(vn, vk) +
dist(vn+1, vk) ? dist(vn, vn+1) is minimal.
202**024 3
COMP528
Figure 7: Step 3 of Cheapest Insertion
4. Repeat step 3 until all vertices have been visited, and are in the tour.
Figure 8: Step 4 of Cheapest Insertion
Figure 9: Final step and tour of Cheapest Insertion. Tour Cost = 11
2.3 Farthest Insertion
The farthest insertion algorithm begins with two connected vertices in a partial tour. Each
step, it checks for the farthest vertex not visited from any vertex within the partial tour, and
then inserts it between two connected vertices in the partial tour where the cost of inserting
it between the two connected vertices is minimal.
202**024 4
COMP528
These steps can be followed to implement the farthest insertion algorithm. Assume that the
indices i, j, k etc. are vertex labels unless stated otherwise. In a tiebreak situation, always
pick the lowest index(indices).
1. Start off with a vertex vi
.
Figure 10: Step 1 of Farthest Insertion
2. Find a vertex vj such that dist(vi
, vj ) is maximal, and create a partial tour (vi
, vj
, vi).
Figure 11: Step 2 of Farthest Insertion
3. For each vertex vn in the partial tour, where n is a position in the partial tour, find an
unvisited vertex vk such that dist(vn, vk) is maximal.
Figure 12: Step 3 of Farthest Insertion
202**024 5
COMP528
4. Insert vk between two connected vertices in the partial tour vn and vn+1, where n is
a position in the partial tour, such that dist(vn, vk) + dist(vn+1, vk) ? dist(vn, vn+1) is
minimal.
Figure 13: Step 4 of Farthest Insertion
5. Repeat steps 3 and 4 until all vertices have been visited, and are in the tour.
Figure 14: Step 3(2) of Farthest Insertion
Figure 15: Step 4(2) of Farthest Insertion
202**024 6
COMP528
Figure 16: Final step and tour of Farthest Insertion. Tour Cost = 11
3 Running your programs
Your program should be able to be ran like so:
./<program name >. exe <c o o r d i n a t e f i l e n a m e > <o u t p u t fil e n am e >
Therefore, your program should accept a coordinate file, and an output file as arguments.
Note that C considers the first argument as the program executable.
Both implementations should read a coordinate file, run either cheapest insertion or farthest
insertion, and write the tour to the output file.
3.1 Provided Code
You are provided with code that can read the coordinate input from a file, and write the
final tour to a file. This is located in the file coordReader.c. You will need to include this
file when compiling your programs.
The function readNumOfCoords() takes a filename as a parameter and returns the number
of coordinates in the given file as an integer.
The function readCoords() takes the filename and the number of coordinates as parameters,
and returns the coordinates from a file and stores it in a two-dimensional array of doubles,
where coords[i ][0] is the x coordinate for the ith coordinate, and coords[i ][1] is the y
coordinate for the ith coordinate.
The function writeTourToFile() takes the tour, the tour length, and the output filename
as parameters, and writes the tour to the given file.
202**02**
University of Liverpool Continuous Assessment 1 COMP528
4 Instructions
? Implement a serial solution for the cheapest insertion and the farthest insertion. Name
these: cInsertion.c, fInsertion.c.
? Implement a parallel solution, using OpenMP, for the cheapest insertion and the far?thest insertion. Name these: ompcInsertion.c, ompfInsertion.c.
? Create a Makefile and call it ”Makefile” which performs as the list states below. With?out the Makefile, your code will not grade on CodeGrade (see more in section 5.1).
– make ci compiles cInsertion.c and coordReader.c into ci.exe with the GNU com?piler
– make fi compiles fInsertion.c and coordReader.c into fi.exe with the GNU compiler
– make comp compiles ompcInsertion.c and coordReader.c into comp.exe with the
GNU compiler
– make fomp compiles ompfInsertion.c and coordReader.c into fomp.exe with the
GNU compiler
– make icomp compiles ompcInsertion.c and coordReader.c into icomp.exe with
the Intel compiler
– make ifomp compiles ompfInsertion.c and coordReader.c into ifomp.exe the Intel
compiler.
? Test each of your parallel solutions using 1, 2, 4, 8, 16, and ** threads, recording
the time it takes to solve each one. Record the start time after you read from the
coordinates file, and the end time before you write to the output file. Do all testing
with the large data file.
? Plot a speedup plot with the speedup on the y-axis and the number of threads on the
x-axis for each parallel solution.
? Plot a parallel efficiency plot with parallel efficiency on the y-axis and the number of
threads on the x-axis for each parallel solution.
? Write a report that, for each solution, using no more than 1 page per solution,
describes: your serial version, and your parallelisation strategy
? In your report, include: the speedup and parallel efficiency plots, how you conducted
each measurement and calculation to plot these, and sreenshots of you compiling and
running your program. These do not contribute to the page limit
202**024 8
COMP528
? Your final submission should be uploaded onto CodeGrade. The files you
upload should be:
– Makefile
– cInsertion.c
– fInsertion.c
– ompcInsertion.c
– ompfInsertion.c
– report.pdf
5 Hints
You can also parallelise the conversion of the coordinates to the distance matrix.
When declaring arrays, it’s better to use dynamic memory allocation. You can do this by...
int ? o n e d a r ra y = ( int ?) malloc ( numOfElements ? s i z e o f ( int ) ) ;
For a 2-D array:
int ?? twod a r ra y = ( int ??) malloc ( numOfElements ? s i z e o f ( int ? ) ) ;
for ( int i = 0 ; i < numOfElements ; i ++){
twod a r ra y [ i ] = ( int ?) malloc ( numOfElements ? s i z e o f ( int ) ) ;
}
5.1 Makefile
You are instructed to use a MakeFile to compile the code in any way you like. An example
of how to use a MakeFile can be used here:
{make command } : { t a r g e t f i l e s }
{compile command}
c i : c I n s e r t i o n . c coordReader . c
gcc c I n s e r t i o n . c coordReader . c ?o c i . exe ?lm
Now, in the Linux environment, in the same directory as your Makefile, if you type ‘make ci‘,
the compile command is automatically executed. It is worth noting, the compile command
must be indented. The target files are the files that must be present for the make command
to execute.
202**024 9
COMP528
6 Marking scheme
1 Code that compiles without errors or warnings 15%
2 Same numerical results for test cases 20%
3 Speedup plot 10%
4 Parallel Efficiency Plot 10%
5 Parallel efficiency up to ** threads 15%
6 Speed of program 10%
11 Clean code and comments 10%
12 Report 10%
Table 1: Marking scheme
7 Deadline
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:4CCS1CS1代做、代寫c/c++,Python程序
  • 下一篇:代做CHC6089、代寫 java/c++程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产精品久久久久久久久久免费| 国产欧美日韩91| 欧美国产日韩精品免费观看| 国产精品二区在线观看| 久久青草福利网站| 最新国产乱人伦偷精品免费网站| 亚洲毛片一区二区| 久久综合久久88| 激情久久婷婷| 久久视频这里只有精品| 亚洲欧洲日产国产网站| 好吊妞这里只有精品| 国产精品第13页| 在线日本高清免费不卡| 久久这里只有精品视频首页| 国产一区日韩一区| 欧美一级在线视频| 午夜老司机精品| 亚洲第一在线| 亚洲一区二区3| 欧美成人一品| 国产精品久久久久久久久免费| 国产精品尤物福利片在线观看| 国产精品一区久久久| 欧美日韩视频| 欧美福利在线观看| 国产欧美日本一区二区三区| 日韩一级大片在线| 亚洲激精日韩激精欧美精品| 免费成人高清在线视频| 欧美成人午夜视频| 欧美色欧美亚洲高清在线视频| 国产精品久久国产愉拍| 国产一区二区三区久久久久久久久| 国产日韩欧美综合精品| 午夜一区二区三区在线观看| 欧美日韩三级一区二区| 一本久道久久综合婷婷鲸鱼| 亚洲欧美日韩精品久久久久| 99riav1国产精品视频| 在线电影欧美日韩一区二区私密| 亚洲电影第1页| 女人天堂亚洲aⅴ在线观看| 久久久精品久久久久| 国产精品美女久久久免费| 国产亚洲一级高清| 日韩午夜电影在线观看| 久久青草欧美一区二区三区| 亚洲精品视频中文字幕| 国产精品有限公司| 亚洲精品欧洲| 亚洲激情一区二区三区| 欧美大片一区二区| 久久久久这里只有精品| 黄色成人av网站| 一区二区三区av| 国产精品久久久久久久久果冻传媒| 亚洲视频香蕉人妖| 亚洲一二三四区| 国内精品视频久久| 亚洲男女毛片无遮挡| 麻豆精品在线观看| 欧美二区在线| 国产精品国产三级国产aⅴ无密码| 99视频一区二区| 亚洲欧美电影在线观看| 玖玖精品视频| 日韩视频在线观看国产| 欧美一区二区三区在线看| 欧美福利小视频| 久久夜精品va视频免费观看| 中文精品99久久国产香蕉| 一区二区三区欧美成人| 亚洲精品乱码久久久久久按摩观| 欧美伦理91i| 欧美日韩国产一区二区| 欧美激情片在线观看| 国产免费成人在线视频| 国产九色精品成人porny| 99在线|亚洲一区二区| 久久国产66| 欧美风情在线| 99精品视频免费| 欧美一区午夜精品| 欧美精品久久久久久| 欧美天堂亚洲电影院在线观看| 欧美三级欧美一级| 国产精品xxx在线观看www| 国产视频欧美视频| 欧美a一区二区| 国产精品区一区二区三区| 亚洲精品一区二区在线| 性色一区二区三区| 性久久久久久久久| 亚洲伦理在线观看| 久久国产福利国产秒拍| 国产精品亚洲综合色区韩国| 亚洲第一精品夜夜躁人人躁| 先锋a资源在线看亚洲| 国产精品美女主播| 亚洲激情黄色| 欧美亚洲免费电影| 国产精品美女在线观看| 日韩亚洲一区二区| 国内精品久久久久国产盗摄免费观看完整版| 国产精品萝li| 亚洲国产高清一区| 亚洲精品国产精品国自产观看浪潮| 小黄鸭精品aⅴ导航网站入口| 欧美精选午夜久久久乱码6080| 久久综合久久综合久久综合| 久久精品中文字幕一区| 久久精品人人做人人爽电影蜜月| 亚洲欧洲一区二区天堂久久| 欧美在线免费视频| 日韩一区二区电影网| 国产一区美女| 欧美小视频在线| 欧美顶级艳妇交换群宴| 你懂的视频一区二区| 国产精品免费久久久久久| 亚洲视频一区二区免费在线观看| 蘑菇福利视频一区播放| 亚洲一区视频| 欧美黑人多人双交| 亚洲一区二区精品在线| 欧美日韩亚洲一区二区三区在线观看| 欧美精品一区二区视频| 亚洲国产aⅴ天堂久久| 狠狠色丁香婷综合久久| 国产欧美一区二区三区国产幕精品| 亚洲高清免费在线| 尤物九九久久国产精品的分类| 欧美区高清在线| 欧美gay视频| 久久国内精品视频| 国产精品九九| 久久精品日韩一区二区三区| 中国成人亚色综合网站| 亚洲人成人77777线观看| 国产亚洲毛片| 欧美三级午夜理伦三级中视频| 国产精品高潮在线| 国产欧美日韩免费| 日韩天堂在线视频| 亚洲先锋成人| 亚洲精品中文字幕有码专区| 欧美伊人久久久久久午夜久久久久| 久久这里只精品最新地址| 欧美黄色免费网站| 亚洲精品系列| 久久久久久高潮国产精品视| 亚洲国产精品久久精品怡红院| 国产精品久久久久毛片大屁完整版| 在线成人欧美| 亚洲午夜精品| 欧美日韩精品伦理作品在线免费观看| 羞羞色国产精品| 国产精品一区三区| 国产精品久久久久久久久免费樱桃| 欧美三级中文字幕在线观看| 国产亚洲一区在线播放| 激情久久综艺| 国产精品永久免费在线|