<em id="rw4ev"></em>

      <tr id="rw4ev"></tr>

      <nav id="rw4ev"></nav>
      <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
      合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

      代寫COMP34212、代做Java/C++編程
      代寫COMP34212、代做Java/C++編程

      時間:2025-04-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



      COMP34212 Cognitive Robotics Angelo Cangelosi 
      COMP34212: Coursework on Deep Learning and Robotics
      34212-Lab-S-Report
      Release: February 2025
      Submission deadline: 27 March 2025, 18:00 (BlackBoard)
      Aim and Deliverable
      The aim of this coursework is (i) to analyse the role of the deep learning approach within the 
      context of the state of the art in robotics, and (ii) to develop skills on the design, execution and 
      evaluation of deep neural networks experiments for a vision recognition task. The assignment will 
      in particular address the learning outcome LO1 on the analysis of the methods and software 
      technologies for robotics, and LO3 on applying different machine learning methods for intelligent 
      behaviour.
      The first task is to do a brief literature review of deep learning models in robotics. You can give a 
      summary discussion of various applications of DNN to different robotics domains/applications. 
      Alternatively, you can focus on one robotic application, and discuss the different DNN models used 
      for this application. In either case, the report should show a good understanding of the key works in 
      the topic chosen.
      The second task is to extend the deep learning laboratory exercises (e.g. Multi-Layer Perceptron 
      (MLP) and/or Convolutional Neural Network (CNN) exercises for image datasets) and carry out and 
      analyse new training simulations. This will allow you to evaluate the role of different 
      hyperparameter values and explain and interpret the general pattern of results to optimise the 
      training for robotics (vision) applications.
      You can use the standard object recognition datasets (e.g. CIFAR, COCO, not the simple MNIST) or 
      robotics vision datasets (e.g. iCub World1
      , RGB-D Object Dataset2
      ). You are also allowed to use 
      other deep learning models beyond those presented in the lab.
      The deliverable to submit is a report (max 5 pages including figures/tables and references) to 
      describe and discuss the training simulations done and their context within robotics research and 
      applications. The report must also include the link to the Code/Notebook, or add the code as 
      appendix (the Code Appendix is in addition to the 5 pages of the core report). Do not use AI/LLM 
      models to generate your report. Demonstrate a credible analysis and discussion of your own 
      simulation setup and results, not of generic CNN simulations. And demonstrate a credible, 
      personalised analysis of the literature backed by cited references.
      COMP34212 Cognitive Robotics Angelo Cangelosi 
      Marking Criteria (out of 30)
      1. Contextualisation and state of the art in robotics and deep learning, with proper use of 
      citations backing your academic review and statements (marks given for 
      clarity/completeness of the overview of the state of the art, with spectrum of deep learning 
      methods considered in robotics; credible personalised critical analysis of the deep learning 
      role in robotics; quality and use of the references cited) [10]
      2. A clear introductory to the DNN classification problem and the methodology used, with 
      explanation and justification of the dataset, the network topology and the hyperparameters 
      chosen; Add Link to the code/notebook you used or add the code in appendix. [3]
      3. Complexity of the network(s), hyperparameters and dataset (marks given for complexity 
      and appropriateness of the network topology; hyperparameter exploration approach; data 
      processing and coding requirements) [4]
      4. Description, interpretation, and assessment of the results on the hyperparameter testing 
      simulations; include appropriate figures and tables to support the results; depth of the 
      interpretation and assessment of the quality of the results (the text must clearly and 
      credibly explain the data in the charts/tables); Discussion of alternative/future simulations 
      to complement the results obtained) [13]
      5. 10% Marks lost if report longer than the required maximum of 5 pages: 10% Marks lost if 
      code/notebook (link to external repository or as appendix) is not included.
      Due Date: 27 March 2025, 18:00, pdf on Blackboard. Use standard file name: 34212-Lab-S-Report

      請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



       

      掃一掃在手機打開當前頁
    1. 上一篇:出評 開團工具
    2. 下一篇:INFO20003代做、代寫SQL編程設計
    3. 無相關信息
      合肥生活資訊

      合肥圖文信息
      出評 開團工具
      出評 開團工具
      挖掘機濾芯提升發動機性能
      挖掘機濾芯提升發動機性能
      戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
      戴納斯帝壁掛爐全國售后服務電話24小時官網
      菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
      菲斯曼壁掛爐全國統一400售后維修服務電話2
      美的熱水器售后服務技術咨詢電話全國24小時客服熱線
      美的熱水器售后服務技術咨詢電話全國24小時
      海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
      海信羅馬假日洗衣機亮相AWE 復古美學與現代
      合肥機場巴士4號線
      合肥機場巴士4號線
      合肥機場巴士3號線
      合肥機場巴士3號線
    4. 上海廠房出租 家居網 結行跨境收款 短信驗證碼 丁香花影院

      關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

      Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
      ICP備06013414號-3 公安備 42010502001045

      成人久久18免费网站入口