日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS-UY 4563、Python程序語言代做
代寫CS-UY 4563、Python程序語言代做

時間:2024-12-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Final Project
CS-UY 4563 - Introduction to Machine Learning
Overview
• Partner with one student and select a machine learning problem of your choice.
• Apply the machine learning techniques you’ve learned during the course to
your chosen problem.
• Present your project to the class at the semester’s end.
Submission Requirements on Gradescope
Submit the following on Gradescope by the evening before the first presentation (exact
date to be announced):
• Presentation slides.
• Project write-up (PDF format).
• Project code as a Jupyter Notebook. If necessary, a GitHub link is acceptable.
• If using a custom dataset, upload it to Gradescope (or provide a GitHub link, if
necessary).
1Project Guidelines
Write-Up Requirements
Your project write-up should include the following:
1. Introduction: Describe your data set and the problem you aim to solve.
2. Perform some unsupervised analysis:
• Explore pattern or structure in the data using clustering and dimensionality (e.g
PCA).
• Visualize the training data
1
:
– Plot individual features to understand their distribution (e.g., histograms
or density plots).
– Plot individual features and their relationship with the target variable.
– Create a correlation matrix to analyze relationships between features.
• Discuss any interesting structure is present in the data. If you don’t find any
interesting structure, describe what you tried.
3. Supervised analysis: Train at least three distinct learning models
2 discussed in
the class (such as Linear Regression, Logistic Regression, SVM, Neural Networks,
CNN).
3
For implementation, you may:
• Use your own implementation from homework or developed independently.
• Use libraries such as Keras, scikit-learn, or TensorFlow.
For each model,
4 you must:
• Try different feature transformations. You should have at least three transformations.
 For example, try the polynomial, PCA, or radial-basis function kernel.
For neural networks, different architectures (e.g., neural networks with varying
numbers of layers) can also be considered forms of feature transformations, as
they learn complex representations of the input data.
• Use different regularization techniques. You should have at least 6 different
regularization values per model
1Do not look at the validation or test data.
2You can turn a regression task into a classification task by binning, or for the same dataset, select a
different feature as the target for your model. Or you can use SVR.
3
If you wish to use a model not discussed in class, you must discuss it with me first, or you will not
receive any points for that model.
4Even if you get a very high accuracy, perform these transformations to see what happens.
24. Table of Results:
• Provide a table with training accuracy and validation metrics for every model.
Include results for the different parameter settings (e.g., different regularization
values).
– For classification include metrics such as precision/recall.
– For regression modes, report metrics like MSE, R2
. For example, suppose
you’re using Ridge Regression and manipulating the value of λ. In that
case, your table should contain the training and validation accuracy for
every lambda value you used.
• Plot and analyze how performance metrics (like accuracy, precision, recall, MSE)
change with different feature transformations, hyperparameters (e.g.regularization
settings, learning rate).
5. Analytical Discussion:
• Analyze the experimental results and explain key findings. Provide a chart of
your key findings.
• Highlight the impact of feature transformations, regularization, and other hyperparameters
 on the model’s performance. Refer to the graphs provide in earlier
sections to support your analysis. Focus on interpreting:
– Whether the models overfit or underfit the data.
– How bias and variance affect performance, and which parameter choices
helped achieve better generalization.
Presentation Guidelines
• You and your partner will give a six-minute presentation to the class.
• Presentations will be held during the last 2 or 3 class periods and during the final
exam period for this class. You will be assigned a day for your presentation. If we
run out of time the day you are to present your project, you will present the next
day reserved for presentations.
• Attendance during all presentations is required. A part of your project grade
will be based on your attendance for everyone else’s presentation.
Important Notes on Academic Integrity
• Your submission will undergo plagiarism checks.
• If we suspect you of cheating, you will receive 0 for your final project grade. See the
syllabus for additional penalties that may be applied.
3Dataset Resources
Below are some resources where you can search for datasets. As a rough guideline, your
dataset should have at least 200 training examples and at least 10 features. You
are free to use these resources, look elsewhere, or create your own dataset.
• https://www.kaggle.com/competitions
• https://www.openml.org/
• https://paperswithcode.com/datasets
• https://registry.opendata.aws/
• https://dataportals.org/
• https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research
• https://www.reddit.com/r/datasets/
• https://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public
Modifications
• If you have a project idea that doesn’t satisfy all the requirements mentioned above,
please inform me, and we can discuss its viability as your final project.
• If you use techniques not covered in class, you must demonstrate your understanding
of these ideas.
Brightspace Submissions Guidelines
• Dataset and Partner: Submit the link to your chosen dataset and your partner’s
name by October 30th.
• Final Submissions: Upload your presentation slides, project write-up, and code to
Gradescope by the evening before the first scheduled presentation. The exact date
will be announced once the total number of projects is confirmed. (I expect the due
date to be December 4th or December 9th.)
Potential Challenges and Resources
As you work with your dataset, you may encounter specific challenges that require additional
 techniques or tools. Below are some topics and resources that might be useful.
Please explore these topics further through online research.
4• Feature Reduction: Consider using PCA (which will be covered in class). PCA is
especially useful when working with SVMs, as they can be slow with high-dimensional
data.
If you choose to use SelectKBest from scikit-learn, you must understand why it works
before you use it.
• Creating Synthetic Examples: When using SMOTE or other methods to generate
synthetic data, ensure that only real data is used in the validation and test sets.
- If using synthetic data, make sure your validation set and test set mirrors the true
class proportions from the original dataset. A balanced test set for naturally unbalanced
 data can give misleading impressions of your model’s real-world performance.
For more details, see: Handling Imbalanced Classes
• Working with Time Series Data: For insights on working with time series data,
visit: NIST Handbook on Time Series
• Handling Missing Feature Values:
– See Lecture 16 at Stanford STATS 306B
– Techniques to Handle Missing Data Values
– How to Handle Missing Data in Python
– Statistical Imputation for Missing Data
• Multiclass Classification:
– Understanding Softmax in Multiclass Classification
– Precision and Recall for Multiclass Metrics
• Optimizers for Neural Networks: You may use Adam or other optimizers for
training neural networks.
• Centering Image Data with Bounding Boxes: If you are working with image
data, you are allowed to use bounding boxes to center the objects in your images. You
can use libraries like OpenCV (‘cv2’).
Tips
Don’t forget to scale your data as part of preprocessing. Be sure to document any modifications
 you made, including the scaling or normalization techniques you applied.
The following resource might be helpful. Please stick to topics we discussed in class or
those mentioned above: CS229: Practical Machine Learning Advice

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp


 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓萊特省旅游經濟好嗎(景點推薦)
  • 下一篇:ENG6編程代寫、代做MATLAB語言程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲精品一级| 影音先锋久久久| 欧美日韩亚洲国产精品| 国产精品国产一区二区| 国产欧美日韩综合一区在线播放| 久久久亚洲欧洲日产国码αv| 日韩午夜剧场| 欧美一区二区免费视频| 欧美体内谢she精2性欧美| 一本在线高清不卡dvd| 一本色道久久精品| 欧美成人69av| 久久久久久综合| 蜜臀av性久久久久蜜臀aⅴ四虎| 欧美一区二区三区免费看| 欧美精品一区在线发布| 亚洲电影av| **性色生活片久久毛片| 久久九九热re6这里有精品| 亚洲娇小video精品| 亚洲精品国产精品乱码不99按摩| 老司机精品导航| 国产精品久久久久免费a∨大胸| 亚洲国产二区| 欧美午夜精品久久久久久孕妇| 亚洲欧洲精品一区二区| 91久久精品日日躁夜夜躁国产| 欧美一区二区免费| 老司机精品导航| 亚洲福利久久| 欧美三级视频在线| 久久精品女人天堂| 久久视频国产精品免费视频在线| 亚洲裸体视频| 国产亚洲免费的视频看| 国产精品入口麻豆原神| 日韩亚洲欧美成人| 国产精品欧美在线| 一区二区三区成人精品| 亚洲校园激情| 久久噜噜噜精品国产亚洲综合| 久久精品人人做人人爽电影蜜月| 黄网站色欧美视频| 久久国产直播| 亚洲天堂av在线免费观看| 一区二区激情小说| 欧美日一区二区在线观看| 久久免费黄色| 美女脱光内衣内裤视频久久网站| 欧美一级成年大片在线观看| 日韩网站免费观看| 在线播放一区| 狠狠干狠狠久久| 中文有码久久| 亚洲欧美日韩视频二区| 国产精品久久久久毛片大屁完整版| 久久久久久久久一区二区| 久久影音先锋| 国产欧美精品va在线观看| 欧美日韩视频| 欧美日韩在线观看视频| 欧美日韩国产综合新一区| 欧美裸体一区二区三区| 在线欧美日韩精品| 国产精品亚洲美女av网站| 欧美成人午夜剧场免费观看| 国产一区视频在线看| 国产午夜精品久久久| 久热爱精品视频线路一| 中文有码久久| 国产午夜亚洲精品羞羞网站| 亚洲片区在线| 国产日产精品一区二区三区四区的观看方式| 国产欧美日韩一级| 国产精品久久久久一区二区三区共| 精品1区2区| 亚洲二区在线| 女人天堂亚洲aⅴ在线观看| 亚洲天堂网在线观看| 国产精品欧美久久| 欧美日韩麻豆| 欧美有码在线视频| 中文在线资源观看视频网站免费不卡| 国内精品伊人久久久久av一坑| 亚洲欧美国产高清va在线播| 欧美精品偷拍| 欧美日本免费一区二区三区| 先锋影音国产精品| 裸体丰满少妇做受久久99精品| 亚洲美女91| 一区二区自拍| 午夜精品久久久久久久久久久| 久久成人一区| 亚洲欧美国产不卡| 欧美一区二区精品在线| 欧美激情成人在线| 国产精品va在线播放我和闺蜜| 国产亚洲欧美激情| 欧美激情中文不卡| 性色一区二区| 亚洲人线精品午夜| 久久久久一区| 国产精品你懂的在线欣赏| 久久久99免费视频| 欧美久久99| 欧美日本韩国一区| 国产视频久久| 亚洲成人影音| 宅男66日本亚洲欧美视频| 亚洲第一区在线观看| 久久婷婷激情| 欧美视频在线不卡| 亚洲全黄一级网站| 国产精品青草综合久久久久99| 黄色亚洲免费| 欧美日韩国产综合久久| 亚洲一区欧美| 亚洲激情图片小说视频| 亚洲精品国产品国语在线app| 久久精品成人欧美大片古装| 午夜视频在线观看一区二区| 国产麻豆精品久久一二三| 国产欧美婷婷中文| 久久久久久久999| 国产精品久久久久久久久免费桃花| 欧美黑人一区二区三区| 一区二区三区国产盗摄| 欧美另类高清视频在线| 亚洲女性喷水在线观看一区| 国产区精品视频| 欧美在线网站| 亚洲盗摄视频| 亚洲日韩中文字幕在线播放| 亚洲电影第1页| 亚洲激情在线视频| 欧美一级理论性理论a| 狠久久av成人天堂| 一区二区三区久久| 久久免费的精品国产v∧| 久久国产加勒比精品无码| 国产精品美女主播| 99ri日韩精品视频| 国模 一区 二区 三区| 国产精品免费在线| 亚洲春色另类小说| 宅男在线国产精品| 中国成人黄色视屏| 欧美日韩另类国产亚洲欧美一级| 亚洲午夜久久久久久久久电影网| 欧美在线综合视频| 日韩一级黄色片| 国产精品美女久久久久久久| 午夜精品久久久久久久久久久久久| 久久成人资源| 亚洲第一精品夜夜躁人人躁| 欧美国产日韩xxxxx| 欧美一区二区三区免费观看视频| 国产一区二区精品久久| 欧美精品亚洲一区二区在线播放| 亚洲免费福利视频| 亚洲日本欧美天堂| 久久精品国产一区二区三区免费看| 国产欧美日韩综合一区在线播放| 亚洲综合不卡|