<em id="rw4ev"></em>

      <tr id="rw4ev"></tr>

      <nav id="rw4ev"></nav>
      <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
      合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

      代做CSC3050、代寫C/C++程序語言
      代做CSC3050、代寫C/C++程序語言

      時間:2024-11-28  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



      CSC3050 Project 4: Cache Simulation
      CSC3050 Teaching Group
      November 20, 2024
      1 Introduction
      Cache is an important component of a CPU system that has a signiffcant impact on computer
      performance by reducing memory access times. The focus of this project is to simulate the
      cache in the RISC-V architecture to give you hands-on experience with the cache system
      and its role in improving system performance.
      2 Overview
      This project is divided into three main parts:
      1. Single-Level Cache Simulation: In this part, you are required to design and implement
       a cache simulator that enables the single-level cache simulation. Moreover,
      you need to use the single-level cache simulator you implemented to compare the cache
      performance under different cache parameters.
      2. Multi-level Cache Simulation: In this part, based on the single-level cache simulator,
       you are required to further implement a multi-level cache simulator. You need
      to examine further how a multi-level cache can improve performance compared to a
      single-level cache.
      3. Implementation of Pre-fetching: In this section, you are required to implement
      a critical technique known as pre-fetching. Moreover, you need to compare the cache
      performance with and without pre-fetching.
      3 Single-Level Cache Simulation
      • Implementation Requirements: You are required to implement a Cache class for
      simulating a single-level cache (The code from [1] is a reference code for your). The
      ffle structure and description you may use are shown in Table 1.
      The simulated cache should be able to perform some parameter tuning, such as cache
      size, block size, and associativity level. Besides that, you are required to simulate
      1ffle name Discription
      include/Cache.h Statement of the Cache class.
      src/Cache.cpp Implementation of Cache class.
      src/MainSinCache.cpp Main entrance of the single-level cache simulator.
      src/MainMulCache.cpp Main entrance of the multi-level cache simulator.
      Table 1: File structure and description of single-level and multi-level cache simulation.
      Parameter Values
      Cache Size 4KB to 1MB, incremented by 4X.
      Block Size **Bytes to 256Bytes incremented by 2X.
      Associativity 2 to ** incremented by 2X
      Write Back True or False.
      Write Allocate True of False.
      Table 2: Parameters used in single-level cache simulation.
      Write Back and Write Allocate policies using the LRU replacement algorithm in your
      simulation. The parameters that are tunable and their ranges are listed in Table 2.
      Finally, some performance data (e.g. miss rate of the cache and total access latency)
      needs to be saved in a CSV ffle.
      • Performance Evaluation: After the implementation, you are required to evaluate
      the cache performance based on your simulator. We will provide you with a test trace
      (test.trace) to facilitate the performance evaluation. What you can do includes but is
      not limited to
      – Analyzing the trend of Miss Rate with Block Size under different cache sizes
      – Analyzing the change of Associativity with Miss Rate under different cache sizes
      – Analyzing the amount of cache misses per thousand instructions under different
      cache sizes
      You are also free to design scenarios for performance evaluation as you wish. But
      please analyze the performance in at least two different scenarios. You should provide
      graphical or tabular data and conduct the analysis based on the data mentioned above.
      The results and analysis should be given in your report.
      4 Multi-Level Cache Simulation
      • Implementation Requirements: You are required to simulate the multi-level cache
      in this part based on your single-level cache simulator.
      • Performance Evaluation: You should conduct the comparison between the singlelevel
       and multi-level cache system whose parameters are given in Table 3 and Table
      4, respectively. The cache miss latency is set to 100 CPU cycles. Also, graphical or
      2tabular data are required and you should put the comparisons and analysis in your
      report.
      Level Capacity Associativity Block Size Write Policy Hit Latency
      L1 16 KB 1 way 64 Bytes Write Back 1 CPU Cycle
      Table 3: Cache parameters for single-level cache.
      Level Capacity Associativity Block Size Write Policy Hit Latency
      L1 16 KB 1 way 64 Bytes Write Back 1 CPU Cycle
      L2 128 KB 8 ways 64 Bytes Write Back 8 CPU Cycle
      L3 2 MB 16 ways 64 Bytes Write Back 20 CPU Cycle
      Table 4: Cache parameters for multi-level cache.
      5 Pre-Fetching Implementation
      • Implementation Requirements: Based on the multi-level cache simulation, you are
      required to further add the pre-fetching technique. Specifically, the mechanism is to
      prefetch data in advance based on a detected memory access pattern. In this project,
      you will implement a pre-fetching algorithm capable of detecting fixed-stride memory
      access patterns; the pseudo-code of the algorithm is summarized in Algorithm 1.
      Algorithm 1 Stride-Based Pre-fetching Algorithm
      1: initialize: stride = 0, is prefetch = false.
      2: for Each Memory Access do
      3: Calculate the memory access stride (the distance between the current memory access
      address and the address of the previous memory access with the same operation).
      4: if is prefetch = false and there are more than three times with the same stride then
      5: is prefetch = true
      6: prefetch address = current address + stride
      7: Prefetching(prefetch address)
      8: end if
      9: if is prefetch = true and more than three times the different strides are detected
      then
      10: is prefetch = false.
      11: Stop prefecting.
      12: end if
      13: end for
      • Performance Evaluation: You are required to compare the performance of a multilevel
      cache with and without pre-fetching. The setting of the multi-level cache is the
      same as that in the previous part. Moreover, the test prefetch.trace is the test trace
      3specifically designed for prefetching; you can do the performance comparison based on
      it. The results should be included in your report.
      6 Submission
      For this project, you must use C/C++ to implement the cache simulator. If you use other
      languages, you will get a 0 score. You need to submit the following files:
      • src/*: include all source code files
      • include/*: include all header files
      • CMakelists.txt: the cmake file for your project
      • project-report.pdf: a detailed description of your implementation. The specific things
      that need to be included are as follows:
      – The implementation details of your simulator.
      – Performance evaluation and analysis mentioned above.
      Please compress all files into a single zip file and submit it to the BlackBoard. The file name
      should be your student ID, like 22101**40.zip.
      7 Grading Details
      The overall score will be calculated as follows:
      • Single-level cache simulation code: 20%
      • Multi-level cache simulation code: 20%
      • Pre-Fetching implementation code: 40%
      • Report: 20%
      For the code, we will check whether your code can run or not. Please make sure that your
      code runs correctly. If the code does not run, it will be directly marked as 0 points.
      8 About the reference code
      To reduce the difficulty and complexity of implementation, we encourage you to refer to
      existing code like [1]. This project is also designed based on [1]. However, if you simply
      submit the code from the reference [1] or only do simple tasks like adding comments, we
      consider that you haven’t put much effort and your grade will be directly marked as zero.
      References
      [1] Hao He, “RISCV-Simulator,” https://github.com/hehao98/RISCV-Simulator, 2019.
      4

      請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp



       

      掃一掃在手機打開當前頁
    1. 上一篇:中國最低調的隱形富豪起名大師顏廷利:全球點贊之父,國際享有盛譽
    2. 下一篇:MS3251代寫、代做Python/Java程序
    3. 無相關信息
      合肥生活資訊

      合肥圖文信息
      挖掘機濾芯提升發動機性能
      挖掘機濾芯提升發動機性能
      戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
      戴納斯帝壁掛爐全國售后服務電話24小時官網
      菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
      菲斯曼壁掛爐全國統一400售后維修服務電話2
      美的熱水器售后服務技術咨詢電話全國24小時客服熱線
      美的熱水器售后服務技術咨詢電話全國24小時
      海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
      海信羅馬假日洗衣機亮相AWE 復古美學與現代
      合肥機場巴士4號線
      合肥機場巴士4號線
      合肥機場巴士3號線
      合肥機場巴士3號線
      合肥機場巴士2號線
      合肥機場巴士2號線
    4. 幣安app官網下載 短信驗證碼 丁香花影院

      關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

      Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
      ICP備06013414號-3 公安備 42010502001045

      成人久久18免费网站入口