<em id="rw4ev"></em>

      <tr id="rw4ev"></tr>

      <nav id="rw4ev"></nav>
      <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
      合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

      代寫CHEE 4703、代做Java/Python編程設計
      代寫CHEE 4703、代做Java/Python編程設計

      時間:2024-11-27  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



      CHEE **03: Process Dynamics and Control Fall 2024 
       
      Lab 3: Root Locus Diagram and Controller Tuning 
      Process Background 
      Consider a blending process with two inlet streams and a single (overflow) outlet stream. The 
      schematic diagram of the process is shown in Figure 1, where x1, x2 and x represent the mass 
      fraction of component A and w1, w2 and w represents the overall mass flow rate. One of the inlet 
      streams, stream 1, is made up of compound A (and the balance compound B). The mass fraction 
      of A is a disturbance variable and has a steady state value of 20% (with a total steady state flow 
      rate of 1 kg/min). The other inlet stream, stream 2, is made up of pure B, where the flow rate is a 
      manipulated variable. The outlet mass fraction of A is a controlled variable with a target of 10%. 
      Assume that there is 10 kg of liquid in the tank (constant volume with a density similar to water). 
       
      Figure 1. A blending process in a CSTR. 
      Process Parameters 
      The process operating conditions are as follows: 
      Constants Input Steady State Conditions 
      V 10 L   **;**;**;1**; 1 kg/s 
      ρ 1 kg/L   **;**;1**; 0.2 
      x2 0   **;**;**;2**; 1 kg/s 
      Output Steady State Condition 
        **; 0.1 
       CHEE **03: Process Dynamics and Control Fall 2024 
       
      Kathy Isaac, Stanislav Sokolenko Page 2 of 7 
       
      From Example 10 in Topic 2, the process, Gp, and disturbance, Gd, transfer functions are: 
       
      The process is controlled by a PI controller, Gc. Model the actuator, Gv, with a variable delay, a, 
      and assume all other transfer functions are unity (Gm = Gs = 1). 
       (1/1 𝑃𝑎𝑑é 𝑎w**1;w**1;w**3;w**0;w**9;𝑖𝑚𝑎w**5;𝑖w**0;𝑛) 
       
      Figure 2. General representation of a closed loop process. 
      Objectives 
      1. Determine the critical controller parameters using a root locus plot. 
      2. Evaluate the effect of delay on stability and critical controller parameter using root locus plots. 
      3. Apply the direct synthesis controller tuning method to the process and evaluate the response 
      to disturbance rejection. 
       
       CHEE **03: Process Dynamics and Control Fall 2024 
       
      Kathy Isaac, Stanislav Sokolenko Page 3 of 7 
       
      Controller Setup 
      1. Implement a closed loop PI controller in Simulink to control the outlet mass fraction of 
      component A by controlling the flow rate of stream 2 as illustrated in Figure 2. 
      • Use Transfer Fcn blocks to implement the process, Gp, disturbance, Gd, and the actuator, 
      Gv. 
      • Refer to Prelab 2 to set up the appropriate controller in a closed loop process. 
      • Use Setpoint blocks for the setpoint and disturbance inputs and set the setpoint equal to a 
      constant value of 0 and the disturbance input to a constant value of 0.1. 
      Root Locus Diagram 
      2. Add a Pole-Zero Plot block and set the Disturbance input signal as the Input Perturbation and 
      the Process output signal as the Output Measurement. See the example provided at the end of 
      this document for an example on setting up the root locus plot. 
       
      Questions 
      1. For the closed loop process with a PI controller with a delay of 1 s, set Kc = 1 and find the 
      critical τI. Make plots of the poles and zeros showing the transition from stable to unstable at 
      the critical τI. Include 3 plots: stable, critical and unstable. Repeat for delays of 3 and 5 s. Note: 
      Set the Setpoint block constant at 0 and the Disturbance Step block constant at 0.1 
      a. How does the critical τI change with increase in delay? 
      2. For the closed loop process with a PI controller with a delay of 1 s, set τI = 10 and find the 
      critical Kc. Make a plot of the poles and zeros showing the transition from stable to unstable at 
      the critical Kc. Include 3 plots: stable, critical and unstable. Repeat for delays of 3 and 5 s. 
      Note: Set the Setpoint block constant at 0 and the Disturbance Step block constant at 0.1 
      a. How does the critical Kc change with increase in delay? CHEE **03: Process Dynamics and Control Fall 2024 
       
      Kathy Isaac, Stanislav Sokolenko Page 4 of 7 
       
      3. When there is no delay in the actuator, tune the PI controller using the direct synthesis method 
      and evaluate the response to a step change of 0.1 in the disturbance variable to different values 
      of τc between 10 and 100. Note: set the initial value of the disturbance input to 0 and the final 
      value to 0.1. 
      a. How does τc affect the process response? 
      b. What τc should be chosen if the process must reject a step disturbance of 0.1 in under 
      60 seconds with no large oscillations. 
      Report Guidelines 
      1. Use the lab report template provided. 
      2. The report must seek to concisely answer the questions in the previous section. 
      3. The text of the report body must be within 1 page. It is recommended to use a 12-point font, 
      1.5 spaced but please use 1**point font, single spaced at a minimum. 
      4. Do not break up the text. Add all the text to page 1 and refer to figures and tables on subsequent 
      pages to aid your discussion. 
      5. Include a screenshot of your complete Simulink model for the PI controller set up in Question1.

      Pole-Zero Plot Example for the Heating Tank Process 
      1. Set up the closed loop for the given process and controller. Set the Setpoint block constant at 
      0 and the Disturbance Step block constant at 1. 
       CHEE **03: Process Dynamics and Control Fall 2024 
       
      Kathy Isaac, Stanislav Sokolenko Page 5 of 7 
       
      2. Add a Pole-Zero Plot block to the workspace 
       
      3. Double click on the Pole-Zero Plot block and click on the + symbol to add inputs and outputs 
       
      4. Click on the disturbance signal (highlighted in blue) and press the << symbol to add the 
      selected signal. Repeat for the Output signal. CHEE **03: Process Dynamics and Control Fall 2024 
       
      Kathy Isaac, Stanislav Sokolenko Page 6 of 7 
       
       
      5. Once added, change the Configuration of the input signal to Input Perturbation and the 
      output to Output Measurement and click Apply. Change the snapshot time to 1. 
       
      6. Click on Show Plot 
       CHEE **03: Process Dynamics and Control Fall 2024 
       
      Kathy Isaac, Stanislav Sokolenko Page 7 of 7 
       
      7. Click on the green Run button to display the poles and zeros. Poles are represented by x and 
      zeros by o. Click on them to see their exact values 
       
      8. Change controller parameters and assess how the poles and zeros change. 
       
      請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





       

      掃一掃在手機打開當前頁
    1. 上一篇:ESTR1002代做、代寫C/C++設計編程
    2. 下一篇:&#160;COMP338編程代做、代寫Python程序語言
    3. 無相關信息
      合肥生活資訊

      合肥圖文信息
      挖掘機濾芯提升發動機性能
      挖掘機濾芯提升發動機性能
      戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
      戴納斯帝壁掛爐全國售后服務電話24小時官網
      菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
      菲斯曼壁掛爐全國統一400售后維修服務電話2
      美的熱水器售后服務技術咨詢電話全國24小時客服熱線
      美的熱水器售后服務技術咨詢電話全國24小時
      海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
      海信羅馬假日洗衣機亮相AWE 復古美學與現代
      合肥機場巴士4號線
      合肥機場巴士4號線
      合肥機場巴士3號線
      合肥機場巴士3號線
      合肥機場巴士2號線
      合肥機場巴士2號線
    4. 幣安app官網下載 短信驗證碼 丁香花影院

      關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

      Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
      ICP備06013414號-3 公安備 42010502001045

      成人久久18免费网站入口