日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MATH38161、代做R程序設計
代寫MATH38161、代做R程序設計

時間:2024-11-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



MATH38161 Multivariate Statistics and Machine Learning
Coursework
November 2024
Overview
The coursework is a data analysis project with a written report. You will apply skills
and techniques acquired from Week 1 to Week 8 to analyse a subset of the FMNIST
dataset.
In completing this coursework, you should primarily use the techniques and methods
introduced during the course. The assessment will focus on your understanding and
demonstration of these techniques in alignment with the learning outcomes, rather
than the accuracy or exactness of the final results.
The project report will be marked out of 30. The marking scheme is detailed below.
You have twelve days to complete this coursework, with a total workload of approximately 10 hours (including preliminary coursework tasks).
Format
• Software: You should mainly use R to perform the data analysis. You may use
built-in functions from R packages or implement the algorithms with your own
codes.
• Report: You may use any document preparation system of your choice but the
final document must be a single PDF in A4 format. Ensure that the text in the
PDF is machine-readable.
• Content: Your report must include the complete analysis in a reproducible format,
integrating the computer code, figures, and text etc. in one document.
• Title Page: Show your full name and your University ID on the title page of your
report.
• Length: Recommended length is 8 pages of content (single sided) plus title
page. Maximum length is 10 pages of content plus the title page. Any content
exceeding 10 pages will not be marked.
1
Submission process and deadline
• The deadline for submission is 11:59pm, Friday 29 November 2024.
• Submission is online on Blackboard (through Grapescope).
Academic Integrity and Use of AI Tools
This is an individual coursework. Your analysis and report must be completed
independently, including all computer code. Note that according to the University
guidances, output generated by AI tools is considered work created by another person.
• Citations: Acknowledge all sources, including AI tools used to support text and
code writing.
• Ethics: Use sources in an academically appropriate and ethical manner. Do not
copy verbatim, and cite the original authors rather than second- or third-level
sources.
• Accuracy: Be mindful that sources, including Wikipedia and AI tools, may contain
non-obvious errors.
Copying and plagiarism (=passing off someone else’s work as your own) is a very
serious offence and will be strictly prosecuted. For more details see the “Guidance
to students on plagiarism and other forms of academic malpractice” available at
https://documents.manchester.ac.uk/display.aspx?DocID=2870 .
2
Coursework tasks
Analysis of the FMNIST data using principal component analysis
(PCA) and Gaussian mixture models (GMMs)
The Fashion MNIST dataset contains 70,000 grayscale images of fashion products
categorised into 10 distinct classes. More information is available on Wikipedia and
Github.
The data set to be analysed in this coursework is a subset of the full FMNIST data and
contains 10,000 images, each with dimensions of 28 by 28 pixels, resulting in a total of
784 pixels per image. Each pixel is represented by an integer value ranging from 0 to
255. You can download this data subset as “fmnist.rda” (7.4 MB) from Blackboard.
load("fmnist.rda") # load sampled FMNIST data set
dim(fmnist$x) # dimension of features data matrix (10000, 784)
## [1] 10000 784
range(fmnist$x) # range of feature values (0 to 255)
## [1] 0 255
Here is a plot of the first 15 images:
par(mfrow=c(3,5), mar=c(1,1,1,1))
for (k in 1:15) # first 15 images
{
m = matrix( fmnist$x[k,] , nrow=28, byrow=TRUE)
image(t(apply(m, 2, rev)), col=grey(seq(1,0,length=256)), axes = FALSE)
}
3
Each sample is assigned to one label represented by an integer from 0 to 9 (as R factor
with 10 levels):
fmnist$label[1:15] # first 15 labels
## [1] 7 1 4 8 1 ** 1 2 0 7 0 8 1 6
## Levels: 0 1 2 3 4 5 6 7 8 9
Task 1: Dimension reduction for FMNIST data using principal components analysis
(PCA)
The following steps are suggested guidelines to help structure your analysis but are not
meant as assignment-style questions. Integrate your work as part of a cohesive report
with a logical narrative.
• Do some research to learn more about the FMNIST data.
• Compute the 784 principal components from the 784 original pixel variables.
• Compute and plot the proportion of variation attributed to each principal component.
• Create a scatter plot of the first two principal components. Use the known labels
to colour the scatter plot.
• Construct the correlation loadings plot.
• Interpret and discuss the result.
• Save the first 10 principal components of all 10,000 images to a data file for Task 2.
Task 2: Analysis of the FMNIST data set using Gaussian mixture models (GMMs)
Using all 784 pixel variables for cluster analysis is computationally impractical. In
this task, use the 10 (or fewer) principal components instead of the original 784 pixel
variables. Again, these steps serve as guidelines. Integrate this work into your report
logically following from Task 1.
• Cluster the data using Gaussian mixture models (GMMs).
• Find out how many clusters can be identified.
• Interpret and discuss the results.
Structure of the report
Your report should be structured into the following sections:
1. Dataset
2. Methods
3. Results and Discussion
4. References
In Section 1 provide some background and describe the data set. In Section 2 briefly
introduce the method(s) you are using to analyse the data. In Section 3 run the analyses
and present and interpret the results. Show all your R code so that your results are
fully reproducible. In Section 4 list all journal articles, books, wikipedia entries, github
pages and other sources you refer to in your report.
4
Marking scheme
The project report will be assessed out of 30 points based on the following rubrics.
Criteria Marks Rubrics
Description of
data
6 Excellent (5-6 marks): Provides a clear and thorough
overview of the FMNIST dataset, detailing the image
structure, pixel data, and its context within multivariate
analysis.
Good (3-4 marks): Provides a clear overview of the
dataset with some context; minor details may be missing.
Adequate (**2 marks): Basic description of the dataset
with limited context; lacks important details.
Insufficient (0 marks): Little to no description provided.
Description of
Methods
6 Excellent (5-6 marks): Clearly and thoroughly explains
PCA and GMMs, their purposes, and how they apply to
this dataset.
Good (3-4 marks): Provides a clear explanation of PCA
and GMMs, with minor gaps in clarity or relevance.
Adequate (**2 marks): Basic explanation of methods with
limited detail or relevance to the course techniques.
Insufficient (0 marks): Lacks clear explanations of the
methods.
Results and
Discussion
12 Excellent (10-12 marks): Correctly applies PCA and
GMMs, presents clear and informative visualisations, and
provides a coherent and insightful interpretation of the
results.
Good (7-9 marks): Accurately applies PCA and GMMs
with mostly clear visuals and reasonable interpretation;
minor improvements needed.
Adequate (4-6 marks): Basic application of techniques,
limited or unclear visuals, minimal interpretation.
Insufficient (0-3 marks): Incorrect application of
techniques, with little to no interpretation.
Overall
Presentation of
Report
6 Excellent (5-6 marks): Report is well-organised, clear, and
professionally formatted, with a logical narrative and
adherence to page limits.
Good (3-4 marks): Report is generally clear and
organised, with minor structural or formatting issues.
Adequate (**2 marks): Report lacks coherence or has
significant formatting issues; may not meet all format
requirements.
Insufficient (0 marks): Report lacks structure and clarity,
does not meet formatting requirements.
5

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECE 36800、代做Java/Python語言編程
  • 下一篇:ESTR1002代做、代寫C/C++設計編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产亚洲精品bt天堂精选| 日韩亚洲欧美中文三级| 国产精品高清在线| 久久精品中文字幕一区| 亚洲欧美日韩一区二区| 久久动漫亚洲| 午夜精品久久久久| 欧美日韩国产色综合一二三四| 一区二区三区久久久| 精品成人在线观看| 日韩一级在线观看| 一本大道久久a久久综合婷婷| 久热精品视频在线免费观看| 悠悠资源网久久精品| 亚洲国产一区二区三区高清| 国产日韩欧美亚洲一区| 亚洲精品久久久蜜桃| 亚洲视频1区2区| 狠狠综合久久av一区二区小说| 国产一区二区三区av电影| 伊人狠狠色j香婷婷综合| 开元免费观看欧美电视剧网站| 亚洲网站在线看| 亚洲黄色尤物视频| 欧美日韩国产精品一区二区亚洲| 在线观看中文字幕亚洲| 国产精品手机在线| 亚洲女人小视频在线观看| 欧美日韩1234| 欧美日韩一级大片网址| 欧美视频第二页| 欧美日本在线观看| 亚洲福利国产精品| 欧美在线免费观看| 91久久精品国产91久久性色tv| 国产一区二区三区在线观看免费| 亚洲国产精品成人综合色在线婷婷| 日韩午夜高潮| 亚洲尤物在线视频观看| 伊人成人在线视频| 欧美日韩国产精品一卡| 一区二区三区精品国产| 伊人影院久久| 一本大道久久a久久精二百| 性欧美videos另类喷潮| 欧美在线观看视频| 欧美三级视频在线播放| 国产精品色一区二区三区| 国产精品久久久久久亚洲毛片| 在线视频精品一| 欧美性猛交xxxx乱大交蜜桃| 国产亚洲电影| 在线不卡中文字幕播放| 亚洲第一区在线| 亚洲欧美成人一区二区三区| 午夜一区二区三区不卡视频| 亚洲成人在线免费| 亚洲欧洲中文日韩久久av乱码| 亚洲视频第一页| 国产主播精品在线| 亚洲第一狼人社区| 国产精品九九| 性娇小13――14欧美| 欧美一级专区免费大片| 在线观看成人一级片| 在线性视频日韩欧美| 在线观看av一区| 欧美高清视频免费观看| 极品少妇一区二区三区精品视频| 欧美专区在线播放| 欧美色图天堂网| 欧美精品手机在线| 国产婷婷色一区二区三区| 亚洲精选一区二区| 久久久精品国产免费观看同学| 尤物九九久久国产精品的分类| 麻豆国产精品va在线观看不卡| 亚洲精品中文字幕在线观看| 久久精品观看| 久久久91精品国产一区二区三区| 国产一区二区三区网站| 亚洲欧美激情一区二区| 国产伦精品一区二区三| 久久精品国产亚洲精品| 亚洲欧美一区二区原创| 亚洲片在线资源| 欧美成人久久| 亚洲第一免费播放区| 欧美a级一区二区| 久久久久九九九九| 欧美日韩成人综合在线一区二区| 欧美日本韩国一区二区三区| 亚洲国产精品成人va在线观看| 玖玖视频精品| 久久精品国产亚洲5555| 国产精品一区=区| 欧美一区二区久久久| 国产亚洲欧美一区在线观看| 欧美在线黄色| 欧美精品午夜视频| 国产日产亚洲精品| 亚洲毛片一区| 欧美一区视频在线| 国产老女人精品毛片久久| 欧美一级午夜免费电影| 亚洲欧洲在线免费| 国产一区视频在线看| 免费人成网站在线观看欧美高清| 久久精品免费| 欧美激情综合五月色丁香| 久久综合久久综合久久综合| 国产精品成人在线观看| 亚洲国产第一页| 亚洲尤物在线| 亚洲欧洲久久| 亚洲第一福利在线观看| 亚洲国产日韩综合一区| 欧美v国产在线一区二区三区| 欧美精品午夜视频| 亚洲女女女同性video| 久久一区二区三区国产精品| 久久久亚洲影院你懂的| 欧美久久久久久久久| 欧美亚洲视频在线看网址| 欧美片第1页综合| 欧美喷水视频| 在线成人av.com| 久久精品国产一区二区三| 国产在线欧美| 久久不射网站| 欧美天天在线| 亚洲视频视频在线| 欧美三级电影大全| 中文精品一区二区三区| 国产精品乱看| 亚洲欧美色婷婷| 国产精品久久久久久亚洲调教| 国产精品视频网站| 久久久久国产精品一区| 一区二区三区四区国产精品| 久久精品视频免费播放| 欧美日韩在线播放一区二区| 亚洲另类视频| 亚洲福利小视频| 好看的日韩视频| 在线观看91精品国产麻豆| 欧美另类69精品久久久久9999| 欧美一区二区免费观在线| 欧美一区二区三区免费视频| 亚洲人线精品午夜| 久久久蜜臀国产一区二区| 欧美高清在线观看| 亚洲无毛电影| 一本色道久久88综合亚洲精品ⅰ| 久久嫩草精品久久久精品一| 亚洲欧洲一区二区在线观看| 日韩亚洲欧美高清| 久久天堂av综合合色| 亚洲一区中文| 亚洲日本国产| 亚洲一区三区电影在线观看| 亚洲第一在线综合在线| 久久精品国产一区二区三区| 欧美国产日韩免费|