日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫ENG4200、Python/Java程序設計代做
代寫ENG4200、Python/Java程序設計代做

時間:2024-11-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Coursework 2: Neural networks 
ENG4200 Introduction to Artificial Intelligence and Machine Learning 4 
1. Key Information 
• Worth 30% of overall grade 
• Submission 1 (/2): Report submission 
• Deadline uploaded on Moodle 
• Submission 2 (/2): Code submission to CodeGrade 
• Deadline uploaded on Moodle (the same as for report) 
2. Training data 
The training dataset has been generated by maximum flow analysis between nodes 12 and 2. The 
feature dataset has 19 fields, which of each represents the maximum flow capacity of each of the 
19 edges, taking the values of 0, 1, and 2. The output dataset has 20 fields, where the first 19 
fields refer to the actual flow taking place on each of the 19 edges, and the last one refers to the 
maximum flow possible between nodes 12 and 2. 
 
Figure 1 The network used to generate training dataset. This information is just to help you understand the training 
dataset; you must not generate additional training dataset to train your neural network. 
 3. What you will do 
You have to create and train a neural network with the following requirement/note: 
• Only the provided training dataset should be used, i.e. furthur traning dataset must NOT be 
created by performing maximum flow analysis over the network in Figure 1. 
• The accuracy on a hidden test dataset will be evaluated by a customised function as 
follows, where the accuracy on the maximum flow field is weighted by 50%, and other 19 
fields share the rest 50% (you may design your loss function accordingly): 
 
 
 You should prepare two submissions, code submission and report submission. In blue colour are 
assessment criteria. 
• Code submission should include two files (example code uploaded on Moodle): 
o A .py file with two functions 
▪ demo_train demonstrates the training process for a few epochs. It has three 
inputs: (1) the file name of taining feature data (.csv), (2) the file name of 
training output data (.csv), and (3) the number of epochs. It needs to do two 
things: (1) it needs to print out a graph with two curves of training and 
validation accuracy, respectively; and (2) save the model as .keras file. 
▪ predict_in_df makes predictions on a provided feature data. It has two 
inputs: (1) the file name of a trained NN model (.keras) and (2) the file name 
of the feature data (.csv). It needs to return the predictions by the NN model 
as a dataframe that has the same format as ‘train_Y’. 
o A .keras file of your trained model 
▪ This will be used to test the hidden test dataset on CodeGrade. 
 
o You can test your files on CodeGrade. There is no limit in the number of 
submissions on CodeGrade until the deadline. 
 
o Assessment criteria 
▪ 5% for the code running properly addressing all requirements. 
▪ 10% for a third of the highest accuracy, 7% (out of 10%) for a third of the 
second highest accuracy, and 5% (out of 10%) for the rest. 
 
• Report submission should be at maximum 2 pages on the following three questions and 
one optional question: 
o Parametric studies of hyperparameters (e.g. structure, activators, optimiser, learning 
rate, etc.): how did you test different values, what insights have you obtained, and 
how did you decide the final setting of your model? 
o How did you address overfitting and imbalanced datasets? 
o How did you decide your loss function? 
o [Optional] Any other aspects you’d like to highlight (e.g. using advanced methods 
such as graphical neural network and/or transformer)? 
 
o [Formatting] Neither cover page nor content list is required. Use a plain word 
document with your name and student ID in the first line. 
 
o Assessment criteria 
▪ 5% for each of the questions, evaluated by technical quality AND 
writing/presentation 
▪ Any brave attempts of methods (e.g. Graphical Neural Network, Transformer, 
or Physics-Informed Neural Network using physical relationships e.g. that 
the flows going in and out of a node should be balanced) that go beyond 
what we learned in classroom will earn not only the top marks for report, but 
also (unless the accuracy is terribly off) will earn a full 10% mark for 
accuracy in the code submission part. If you have made such attempts, don’t 
forget to highlight your efforts on the report. 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:CS1026A代做、Python設計程序代寫
  • 下一篇:代寫ECE 36800、代做Java/Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美大片在线影院| 亚洲在线观看视频| 国产精品夫妻自拍| 一区国产精品| 亚洲欧美一区二区原创| 国产日韩欧美综合在线| 中文国产一区| 亚洲午夜精品| 欧美人在线视频| 亚洲欧美日韩国产精品| 精品成人免费| 欧美高清在线视频观看不卡| 狠狠v欧美v日韩v亚洲ⅴ| 国产色产综合产在线视频| 国产欧美日韩免费| 国产精品一区免费视频| 国产精品美女xx| 美女视频黄 久久| 激情视频亚洲| 亚洲国产欧美不卡在线观看| 欧美三区免费完整视频在线观看| 国语自产精品视频在线看抢先版结局| 亚洲毛片一区| 亚洲欧美精品中文字幕在线| 欧美日韩国产综合久久| 一个色综合导航| 亚洲欧美另类在线观看| 美乳少妇欧美精品| 一区二区三区毛片| 欧美一区二区三区四区视频| 裸体女人亚洲精品一区| 亚洲尤物视频在线| 国产无遮挡一区二区三区毛片日本| 在线成人激情视频| 欧美日韩综合在线| 欧美精品v国产精品v日韩精品| 国产一区二区三区四区在线观看| 欧美激情精品久久久久久免费印度| 亚洲一区国产视频| 欧美成人免费全部| 国产一区二区精品久久91| 久久久久久一区| 欧美日韩国产综合视频在线观看中文| 亚洲国产高清高潮精品美女| 欧美精品在线观看| 一区二区三区四区在线| 亚洲精品日韩在线观看| 亚洲综合精品四区| 国内精品视频666| 亚洲国产精品黑人久久久| 亚洲成人在线视频网站| 亚洲第一二三四五区| 欧美日韩国产成人在线91| 亚洲欧美日韩在线观看a三区| 女女同性女同一区二区三区91| 国产精品乱看| 亚洲精品一线二线三线无人区| 欧美人牲a欧美精品| 亚洲资源在线观看| 精品盗摄一区二区三区| 伊人婷婷久久| 国产日本欧美一区二区| 在线成人h网| 免费的成人av| 夜夜躁日日躁狠狠久久88av| 亚洲私人影院在线观看| 欧美国产亚洲视频| 欧美一区不卡| 欧美国产日本高清在线| 亚洲一区二区在线免费观看| 狠狠久久亚洲欧美| 亚洲国产精品毛片| 国产欧美一区二区在线观看| 狠狠色综合网站久久久久久久| 欧美一区二区三区婷婷月色| 久久久不卡网国产精品一区| 久久久精品久久久久| 欧美午夜精品久久久久久孕妇| 国产精品qvod| 久久久精品一品道一区| 国产日韩欧美精品综合| 欧美激情中文字幕乱码免费| 日韩一本二本av| 久久久久久久激情视频| 欧美电影在线免费观看网站| 亚洲免费在线视频一区 二区| 欧美性一区二区| 欧美激情第10页| 一区二区不卡在线视频 午夜欧美不卡在| 夜夜嗨av色综合久久久综合网| 久久精品99国产精品| 国产精品久久久久久久久久免费| 亚洲福利视频在线| 韩国一区二区三区在线观看| 久久免费的精品国产v∧| 亚洲高清视频一区二区| 国产精品久久久久久久久久尿| 久久久久这里只有精品| 欧美激情精品久久久久久久变态| 国产欧美日韩不卡免费| 欧美精品激情blacked18| 久久精品色图| 在线综合视频| 国外成人在线视频网站| 日韩视频免费在线观看| 日韩午夜免费视频| 一区二区三区产品免费精品久久75| 亚洲无线一线二线三线区别av| 毛片av中文字幕一区二区| 亚洲欧美日韩国产综合精品二区| 久久精品中文字幕一区二区三区| 在线国产欧美| 国产一区在线观看视频| 亚洲国产毛片完整版| 欧美高清不卡在线| 亚洲视频免费观看| 在线看国产日韩| 久久se精品一区精品二区| 最新国产乱人伦偷精品免费网站| 国产精品毛片高清在线完整版| 亚洲午夜在线观看视频在线| 牛夜精品久久久久久久99黑人| 国产精品极品美女粉嫩高清在线| 欧美激情一区二区三区全黄| 国产午夜精品久久| 黄色成人在线| 国产日韩三区| 日韩一二三在线视频播| 欧美日韩国产经典色站一区二区三区| 日韩视频永久免费| 翔田千里一区二区| 国产伦精品一区二区三区视频黑人| 久久精品一区二区三区不卡| 欧美一区二区在线播放| 午夜亚洲视频| 亚洲一区区二区| 日韩视频欧美视频| 亚洲综合视频网| 在线亚洲激情| 农夫在线精品视频免费观看| 久久久噜久噜久久综合| 国产精品久久久久久户外露出| 1024日韩| 一区二区视频在线观看| 国内精品国语自产拍在线观看| 亚洲一二三级电影| 一区二区三区波多野结衣在线观看| 正在播放亚洲| 欧美日韩国产高清视频| 亚洲国产另类久久久精品极度| 激情久久婷婷| 欧美国产精品人人做人人爱| 亚洲国产日韩欧美一区二区三区| 亚洲欧美在线播放| 亚洲精品久久久蜜桃| 在线视频免费在线观看一区二区| 亚洲精品一区二区三区樱花| 欧美电影打屁股sp| 欧美理论电影在线播放| 久久国产免费看| 亚洲天堂av电影| 亚洲国产精品成人精品| 国产一区二区三区高清在线观看| 久久裸体艺术|