<em id="rw4ev"></em>

      <tr id="rw4ev"></tr>

      <nav id="rw4ev"></nav>
      <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
      合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

      代寫Neural Networks for Image&#160;編程
      代寫Neural Networks for Image&#160;編程

      時間:2024-11-08  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



      Lab 2: Neural Networks for Image 
      Classification
      Duration: 2 hours
      Tools:
      • Jupyter Notebook
      • IDE: PyCharm==2024.2.3 (or any IDE of your choice)
      • Python: 3.12
      • Libraries:
      o PyTorch==2.4.0
      o TorchVision==0.19.0
      o Matplotlib==3.9.2
      Learning Objectives:
      • Understand the basic architecture of a neural network.
      • Load and explore the CIFAR-10 dataset.
      • Implement and train a neural network, individualized by your QMUL ID.
      • Verify machine learning concepts such as accuracy, loss, and evaluation metrics 
      by running predefined code.
      Lab Outline:
      In this lab, you will implement a simple neural network model to classify images from 
      the CIFAR-10 dataset. The task will be individualized based on your QMUL ID to ensure 
      unique configurations for each student.
      1. Task 1: Understanding the CIFAR-10 Dataset
      • The CIFAR-10 dataset consists of 60,000 **x** color images categorized into 10 
      classes (airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks).
      • The dataset is divided into 50,000 training images and 10,000 testing images.
      • You will load the CIFAR-10 dataset using PyTorch’s built-in torchvision library.
      Step-by-step Instructions:
      1. Open the provided Jupyter Notebook.
      2. Load and explore the CIFAR-10 dataset using the following code:
      import torchvision.transforms as transforms
      import torchvision.datasets as datasets
      # Basic transformations for the CIFAR-10 dataset
      transform = transforms.Compose([transforms.ToTensor(), 
      transforms.Normalize((0.5,), (0.5,))])
      # Load the CIFAR-10 dataset
      dataset = datasets.CIFAR10(root='./data', train=True, 
      download=True, transform=transform)
      2. Task 2: Individualized Neural Network Implementation, Training, and Test
      You will implement a neural network model to classify images from the CIFAR-10 
      dataset. However, certain parts of the task will be individualized based on your QMUL 
      ID. Follow the instructions carefully to ensure your model’s configuration is unique.
      Step 1: Dataset Split Based on Your QMUL ID
      You will use the last digit of your QMUL ID to define the training-validation split:
      • If your ID ends in 0-4: use a 70-30 split (70% training, 30% validation).
      • If your ID ends in 5-9: use an 80-20 split (80% training, 20% validation).
      Code:
      from torch.utils.data import random_split
      # Set the student's last digit of the ID (replace with 
      your own last digit)
      last_digit_of_id = 7 # Example: Replace this with the 
      last digit of your QMUL ID
      # Define the split ratio based on QMUL ID
      split_ratio = 0.7 if last_digit_of_id <= 4 else 0.8
      # Split the dataset
      train_size = int(split_ratio * len(dataset))
      val_size = len(dataset) - train_size
      train_dataset, val_dataset = random_split(dataset, 
      [train_size, val_size])
      # DataLoaders
      from torch.utils.data import DataLoader
      batch_size = ** + last_digit_of_id # Batch size is ** + 
      last digit of your QMUL ID
      train_loader = DataLoader(train_dataset, 
      batch_size=batch_size, shuffle=True)
      val_loader = DataLoader(val_dataset, 
      batch_size=batch_size, shuffle=False)
      print(f"Training on {train_size} images, Validating on 
      {val_size} images.")
      Step 2: Predefined Neural Network Model
      You will use a predefined neural network architecture provided in the lab. The model’s 
      hyperparameters will be customized based on your QMUL ID.
      1. Learning Rate: Set the learning rate to 0.001 + (last digit of your QMUL ID * 
      0.0001).
      2. Number of Epochs: Train your model for 10 + (last digit of your QMUL ID) 
      epochs.
      Code:
      import torch
      import torch.optim as optim
      # Define the model
      model = torch.nn.Sequential(
       torch.nn.Flatten(),
       torch.nn.Linear(******3, 512),
       torch.nn.ReLU(),
       torch.nn.Linear(512, 10) # 10 output classes for 
      CIFAR-10
      )
      # Loss function and optimizer
      criterion = torch.nn.CrossEntropyLoss()
      # Learning rate based on QMUL ID
      learning_rate = 0.001 + (last_digit_of_id * 0.0001)
      optimizer = optim.Adam(model.parameters(), 
      lr=learning_rate)
      # Number of epochs based on QMUL ID
      num_epochs = 100 + last_digit_of_id
      print(f"Training for {num_epochs} epochs with learning 
      rate {learning_rate}.")
      Step 3: Model Training and Evaluation
      Use the provided training loop to train your model and evaluate it on the validation set. 
      Track the loss and accuracy during the training process.
      Expected Output: For training with around 100 epochs, it may take 0.5~1 hour to finish. 
      You may see a lower accuracy, especially for the validation accuracy, due to the lower 
      number of epochs or the used simple neural network model, etc. If you are interested, 
      you can find more advanced open-sourced codes to test and improve the performance. 
      In this case, it may require a long training time on the CPU-based device.
      Code:
      # Training loop
      train_losses = [] 
      train_accuracies = []
      val_accuracies = []
      for epoch in range(num_epochs):
       model.train()
       running_loss = 0.0
       correct = 0
       total = 0
       for inputs, labels in train_loader:
       optimizer.zero_grad()
       outputs = model(inputs)
       loss = criterion(outputs, labels)
       loss.backward()
       optimizer.step()
       
       running_loss += loss.item()
       _, predicted = torch.max(outputs, 1)
       total += labels.size(0)
       correct += (predicted == labels).sum().item()
       train_accuracy = 100 * correct / total
       print(f"Epoch {epoch+1}/{num_epochs}, Loss: 
      {running_loss:.4f}, Training Accuracy: 
      {train_accuracy:.2f}%")
       
       # Validation step
       model.eval()
       correct = 0
       total = 0
       with torch.no_grad():
       for inputs, labels in val_loader:
       outputs = model(inputs)
       _, predicted = torch.max(outputs, 1)
       total += labels.size(0)
       correct += (predicted == labels).sum().item()
       
       val_accuracy = 100 * correct / total
       print(f"Validation Accuracy after Epoch {epoch + 1}: 
      {val_accuracy:.2f}%")
       train_losses.append(running_loss) 
       train_accuracies.append(train_accuracy)
       val_accuracies.append(val_accuracy)
      Task 3: Visualizing and Analyzing the Results
      Visualize the results of the training and validation process. Generate the following plots 
      using Matplotlib:
      • Training Loss vs. Epochs.
      • Training and Validation Accuracy vs. Epochs.
      Code for Visualization:
      import matplotlib.pyplot as plt
      # Plot Loss
      plt.figure()
      plt.plot(range(1, num_epochs + 1), train_losses, 
      label="Training Loss")
      plt.xlabel("Epochs")
      plt.ylabel("Loss")
      plt.title("Training Loss")
      plt.legend()
      plt.show()
      # Plot Accuracy
      plt.figure()
      plt.plot(range(1, num_epochs + 1), train_accuracies, 
      label="Training Accuracy")
      plt.plot(range(1, num_epochs + 1), val_accuracies, 
      label="Validation Accuracy")
      plt.xlabel("Epochs")
      plt.ylabel("Accuracy")
      plt.title("Training and Validation Accuracy")
      plt.legend()
      plt.show()
      Lab Report Submission and Marking Criteria
      After completing the lab, you need to submit a report that includes:
      1. Individualized Setup (20/100):
      o Clearly state the unique configurations used based on your QMUL ID, 
      including dataset split, number of epochs, learning rate, and batch size.
      2. Neural Network Architecture and Training (30/100):
      o Provide an explanation of the model architecture (i.e., the number of input 
      layer, hidden layer, and output layer, activation function) and training 
      procedure (i.e., the used optimizer).
      o Include the plots of training loss, training and validation accuracy.
      3. Results Analysis (30/100):
      o Provide analysis of the training and validation performance.
      o Reflect on whether the model is overfitting or underfitting based on the 
      provided results.
      4. Concept Verification (20/100):
      o Answer the provided questions below regarding machine learning 
      concepts.
      (1) What is overfitting issue? List TWO methods for addressing the overfitting 
      issue.
      (2) What is the role of loss function? List TWO representative loss functions.

      請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





       

      掃一掃在手機打開當前頁
    1. 上一篇:CPSC 471代寫、代做Python語言程序
    2. 下一篇:代做INT2067、Python編程設計代寫
    3. 無相關信息
      合肥生活資訊

      合肥圖文信息
      挖掘機濾芯提升發動機性能
      挖掘機濾芯提升發動機性能
      戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
      戴納斯帝壁掛爐全國售后服務電話24小時官網
      菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
      菲斯曼壁掛爐全國統一400售后維修服務電話2
      美的熱水器售后服務技術咨詢電話全國24小時客服熱線
      美的熱水器售后服務技術咨詢電話全國24小時
      海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
      海信羅馬假日洗衣機亮相AWE 復古美學與現代
      合肥機場巴士4號線
      合肥機場巴士4號線
      合肥機場巴士3號線
      合肥機場巴士3號線
      合肥機場巴士2號線
      合肥機場巴士2號線
    4. 幣安app官網下載 短信驗證碼 丁香花影院

      關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

      Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
      ICP備06013414號-3 公安備 42010502001045

      成人久久18免费网站入口