日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫Neural Networks for Image 編程
代寫Neural Networks for Image 編程

時間:2024-11-08  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Lab 2: Neural Networks for Image 
Classification
Duration: 2 hours
Tools:
• Jupyter Notebook
• IDE: PyCharm==2024.2.3 (or any IDE of your choice)
• Python: 3.12
• Libraries:
o PyTorch==2.4.0
o TorchVision==0.19.0
o Matplotlib==3.9.2
Learning Objectives:
• Understand the basic architecture of a neural network.
• Load and explore the CIFAR-10 dataset.
• Implement and train a neural network, individualized by your QMUL ID.
• Verify machine learning concepts such as accuracy, loss, and evaluation metrics 
by running predefined code.
Lab Outline:
In this lab, you will implement a simple neural network model to classify images from 
the CIFAR-10 dataset. The task will be individualized based on your QMUL ID to ensure 
unique configurations for each student.
1. Task 1: Understanding the CIFAR-10 Dataset
• The CIFAR-10 dataset consists of 60,000 **x** color images categorized into 10 
classes (airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks).
• The dataset is divided into 50,000 training images and 10,000 testing images.
• You will load the CIFAR-10 dataset using PyTorch’s built-in torchvision library.
Step-by-step Instructions:
1. Open the provided Jupyter Notebook.
2. Load and explore the CIFAR-10 dataset using the following code:
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# Basic transformations for the CIFAR-10 dataset
transform = transforms.Compose([transforms.ToTensor(), 
transforms.Normalize((0.5,), (0.5,))])
# Load the CIFAR-10 dataset
dataset = datasets.CIFAR10(root='./data', train=True, 
download=True, transform=transform)
2. Task 2: Individualized Neural Network Implementation, Training, and Test
You will implement a neural network model to classify images from the CIFAR-10 
dataset. However, certain parts of the task will be individualized based on your QMUL 
ID. Follow the instructions carefully to ensure your model’s configuration is unique.
Step 1: Dataset Split Based on Your QMUL ID
You will use the last digit of your QMUL ID to define the training-validation split:
• If your ID ends in 0-4: use a 70-30 split (70% training, 30% validation).
• If your ID ends in 5-9: use an 80-20 split (80% training, 20% validation).
Code:
from torch.utils.data import random_split
# Set the student's last digit of the ID (replace with 
your own last digit)
last_digit_of_id = 7 # Example: Replace this with the 
last digit of your QMUL ID
# Define the split ratio based on QMUL ID
split_ratio = 0.7 if last_digit_of_id <= 4 else 0.8
# Split the dataset
train_size = int(split_ratio * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, 
[train_size, val_size])
# DataLoaders
from torch.utils.data import DataLoader
batch_size = ** + last_digit_of_id # Batch size is ** + 
last digit of your QMUL ID
train_loader = DataLoader(train_dataset, 
batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, 
batch_size=batch_size, shuffle=False)
print(f"Training on {train_size} images, Validating on 
{val_size} images.")
Step 2: Predefined Neural Network Model
You will use a predefined neural network architecture provided in the lab. The model’s 
hyperparameters will be customized based on your QMUL ID.
1. Learning Rate: Set the learning rate to 0.001 + (last digit of your QMUL ID * 
0.0001).
2. Number of Epochs: Train your model for 10 + (last digit of your QMUL ID) 
epochs.
Code:
import torch
import torch.optim as optim
# Define the model
model = torch.nn.Sequential(
 torch.nn.Flatten(),
 torch.nn.Linear(******3, 512),
 torch.nn.ReLU(),
 torch.nn.Linear(512, 10) # 10 output classes for 
CIFAR-10
)
# Loss function and optimizer
criterion = torch.nn.CrossEntropyLoss()
# Learning rate based on QMUL ID
learning_rate = 0.001 + (last_digit_of_id * 0.0001)
optimizer = optim.Adam(model.parameters(), 
lr=learning_rate)
# Number of epochs based on QMUL ID
num_epochs = 100 + last_digit_of_id
print(f"Training for {num_epochs} epochs with learning 
rate {learning_rate}.")
Step 3: Model Training and Evaluation
Use the provided training loop to train your model and evaluate it on the validation set. 
Track the loss and accuracy during the training process.
Expected Output: For training with around 100 epochs, it may take 0.5~1 hour to finish. 
You may see a lower accuracy, especially for the validation accuracy, due to the lower 
number of epochs or the used simple neural network model, etc. If you are interested, 
you can find more advanced open-sourced codes to test and improve the performance. 
In this case, it may require a long training time on the CPU-based device.
Code:
# Training loop
train_losses = [] 
train_accuracies = []
val_accuracies = []
for epoch in range(num_epochs):
 model.train()
 running_loss = 0.0
 correct = 0
 total = 0
 for inputs, labels in train_loader:
 optimizer.zero_grad()
 outputs = model(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()
 
 running_loss += loss.item()
 _, predicted = torch.max(outputs, 1)
 total += labels.size(0)
 correct += (predicted == labels).sum().item()
 train_accuracy = 100 * correct / total
 print(f"Epoch {epoch+1}/{num_epochs}, Loss: 
{running_loss:.4f}, Training Accuracy: 
{train_accuracy:.2f}%")
 
 # Validation step
 model.eval()
 correct = 0
 total = 0
 with torch.no_grad():
 for inputs, labels in val_loader:
 outputs = model(inputs)
 _, predicted = torch.max(outputs, 1)
 total += labels.size(0)
 correct += (predicted == labels).sum().item()
 
 val_accuracy = 100 * correct / total
 print(f"Validation Accuracy after Epoch {epoch + 1}: 
{val_accuracy:.2f}%")
 train_losses.append(running_loss) 
 train_accuracies.append(train_accuracy)
 val_accuracies.append(val_accuracy)
Task 3: Visualizing and Analyzing the Results
Visualize the results of the training and validation process. Generate the following plots 
using Matplotlib:
• Training Loss vs. Epochs.
• Training and Validation Accuracy vs. Epochs.
Code for Visualization:
import matplotlib.pyplot as plt
# Plot Loss
plt.figure()
plt.plot(range(1, num_epochs + 1), train_losses, 
label="Training Loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.title("Training Loss")
plt.legend()
plt.show()
# Plot Accuracy
plt.figure()
plt.plot(range(1, num_epochs + 1), train_accuracies, 
label="Training Accuracy")
plt.plot(range(1, num_epochs + 1), val_accuracies, 
label="Validation Accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.title("Training and Validation Accuracy")
plt.legend()
plt.show()
Lab Report Submission and Marking Criteria
After completing the lab, you need to submit a report that includes:
1. Individualized Setup (20/100):
o Clearly state the unique configurations used based on your QMUL ID, 
including dataset split, number of epochs, learning rate, and batch size.
2. Neural Network Architecture and Training (30/100):
o Provide an explanation of the model architecture (i.e., the number of input 
layer, hidden layer, and output layer, activation function) and training 
procedure (i.e., the used optimizer).
o Include the plots of training loss, training and validation accuracy.
3. Results Analysis (30/100):
o Provide analysis of the training and validation performance.
o Reflect on whether the model is overfitting or underfitting based on the 
provided results.
4. Concept Verification (20/100):
o Answer the provided questions below regarding machine learning 
concepts.
(1) What is overfitting issue? List TWO methods for addressing the overfitting 
issue.
(2) What is the role of loss function? List TWO representative loss functions.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:CPSC 471代寫、代做Python語言程序
  • 下一篇:代做INT2067、Python編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        久久狠狠一本精品综合网| 欧美精品一区二区三| 国产精品久久一区主播| 国产日韩亚洲| 亚洲精品一区二区网址| 亚洲香蕉伊综合在人在线视看| 亚洲国产精品一区二区第一页| 国产精品日韩欧美综合| 国产午夜精品一区理论片飘花| 国产精品久久看| 久久精品成人一区二区三区蜜臀| 香蕉成人久久| 亚洲电影一级黄| 欧美系列精品| 国产日韩欧美精品综合| 国产亚洲精品高潮| 一区二区三区视频观看| 亚洲欧洲日本国产| 午夜日韩在线观看| 欧美手机在线| 在线观看视频一区| 国产精品分类| 亚洲经典三级| 亚洲天堂av综合网| 国产欧美日韩在线| 国产一区二区剧情av在线| 欧美日韩中文精品| 国产精品xxx在线观看www| 午夜精品久久久久99热蜜桃导演| 国产精品视频内| 日韩视频一区二区三区在线播放| 亚洲性夜色噜噜噜7777| 国产女主播一区二区三区| 亚洲国产国产亚洲一二三| 国产精品麻豆va在线播放| 久久免费黄色| 亚洲精品美女免费| 亚洲免费av片| 亚洲影音一区| 亚洲影院高清在线| 亚洲欧美在线aaa| 午夜久久99| 午夜欧美理论片| 亚洲第一黄色网| 一本色道久久综合一区| 亚洲人妖在线| 欧美亚州一区二区三区| 樱桃成人精品视频在线播放| 夜夜嗨av一区二区三区网页| 久久av一区二区三区亚洲| 中文欧美日韩| 亚洲一区一卡| 欧美一二区视频| 国产亚洲欧美中文| 欧美一级片一区| 一区二区三区精品视频在线观看| 在线欧美小视频| 国产精品美女999| 美女主播视频一区| 美日韩精品免费观看视频| 欧美激情国产日韩| 国产一区二区三区在线观看免费视频| 亚洲特级毛片| 亚洲女优在线| 久久精品中文字幕一区二区三区| 国产一区av在线| 一片黄亚洲嫩模| 亚洲精品女av网站| 日韩午夜高潮| 欧美国产日韩精品免费观看| 91久久国产综合久久91精品网站| 欧美精品乱人伦久久久久久| 99在线精品免费视频九九视| 久久久999国产| 久久久91精品| 国产精品一区在线播放| 一区二区三区日韩欧美精品| 欧美日韩精品是欧美日韩精品| 久久精品国产91精品亚洲| 欧美多人爱爱视频网站| 国产综合亚洲精品一区二| 欧美激情精品久久久久久蜜臀| 国产在线欧美日韩| 国产九九精品视频| 欧美午夜片在线观看| 国产欧美日韩精品专区| 在线观看亚洲a| 久久久久国产精品一区三寸| 嫩草伊人久久精品少妇av杨幂| 亚洲精品美女在线观看| 欧美在线1区| 一区二区三区高清不卡| 亚洲激情av| 欧美激情一二区| 日韩亚洲在线| 91久久精品一区| 国产精品久久久对白| 黄色精品网站| 久久久久这里只有精品| 日韩一区二区久久| 国产一区久久久| 欧美精品福利视频| 国内揄拍国内精品少妇国语| 国产亚洲一区二区三区在线观看| 久久在线视频| 国产精品主播| 一区二区三区四区五区精品| 欧美日韩国产在线看| 国产资源精品在线观看| 亚洲精品影院在线观看| 国产欧美日韩一区二区三区| 国产精品激情av在线播放| 欧美一区影院| 极品av少妇一区二区| 亚洲欧美久久久久一区二区三区| 国产色视频一区| 久久婷婷丁香| 亚洲综合色丁香婷婷六月图片| 伊人成人网在线看| 久久久久久9| 亚洲免费在线视频| 久久一区国产| 久久av老司机精品网站导航| 午夜精品久久久久久久男人的天堂| 玖玖综合伊人| 免费一级欧美片在线观看| 亚洲第一免费播放区| 国产欧美一区二区三区沐欲| 国产精品美女久久久浪潮软件| 香蕉国产精品偷在线观看不卡| 牛夜精品久久久久久久99黑人| 国产精品日产欧美久久久久| 日韩午夜中文字幕| 国产一区二区高清不卡| 91久久精品国产91性色tv| 欧美日韩亚洲综合在线| 狠狠88综合久久久久综合网| 久久久综合网| 亚洲一区二区三区国产| 国产精品sm| 欧美日韩在线不卡一区| 久久一区二区三区国产精品| 亚洲麻豆av| 久久综合九色综合欧美狠狠| 亚洲私人影吧| 麻豆免费精品视频| 欧美日韩综合在线| 亚洲国产精品成人久久综合一区| 欧美日韩中字| 一区二区三区在线免费视频| 国产亚洲欧美日韩在线一区| 久久香蕉精品| 亚洲午夜在线观看视频在线| 亚洲国产日韩一区| 国产三区二区一区久久| 亚洲三级电影在线观看| 夜夜嗨一区二区三区| 欧美呦呦网站| 欧美小视频在线| 亚洲人午夜精品免费| 国产精品视频免费观看www| 亚洲大片一区二区三区| 亚洲深爱激情| 一区二区三区视频在线观看|