日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做IMSE7140、代寫Java/c++程序語言
代做IMSE7140、代寫Java/c++程序語言

時間:2024-11-03  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



IMSE7140 Assignment 2
Cracking CAPTCHAs
(20 points)
2.1 Brief Introduction
CAPTCHA or captcha is the acronym for “Completely Automated Public Turing test
to tell Computers and Humans Apart.” You must have been already familiar with it
because of its popularity in preventing bot attacks or spam everywhere. This assign ment, however, will guide you in implementing a deep learning model that can crack a
commercial-level captcha!
You deliverables for this assignment should include
1. A single PDF file answers.pdf with answers to all the questions explicitly marked
by “Q” with a serial number in this document, and
2. A train.py file to fulfill the programming task requirements marked by “PT.”
Of course, GPUs can facilitate your experiments—Don’t worry if you don’t have any,
the training requirement is deliberately simplified.
2.2 Training your model
The captchas we will crack is the multicolorcaptcha. Please pip install the exact version
1.2.0 (the current latest one) in case there might be any incompatibility for other releases.
We use the following codes to generate captchas.
1 from multicolorcaptcha import CaptchaGenerator
2
3 generator = CaptchaGenerator (0)
4 captcha = generator . gen_captcha_image ( difficult_level =0)
5 image = captcha . image
6 characters = captcha . characters
7 image . save ( f"{ characters }. png", "PNG")
In this snippet, CaptchaGenerator(0) configures the image size to 256 × 144 pixels,
and the difficult level is set to 0 so that the captchas only contains four 0–9 digits.
Please run the code snippet on your computer. If the captcha is successfully generated,
it should look like Figure 2.1.
1
2.2. Training your model S. Qin
Figure 2.1: Sample captcha with digits 0570
The training and the validation datasets are generated and attached in folders
capts train and capts val. For any machine learning problem, before you start to
devise a solution, it is always a good idea to observe the data and gain some intuition
first. You may immediately recognize some difficulties in this task:
• The digits have a set of random fonts and colors;
• Some certain range of random rotations are applied to the digits;
• Some line segments are randomly added to the image.
Such a task is considered impossible for traditional pattern recognition methods,
which may tackle the problem in a process like this: image thresholding, segmenta tion, handcrafted filter design, and pattern matching. We can conjecture that “filter
design” may fail in capturing useful features and “pattern matching” may have a poor
performance.
Fortunately, in the deep learning era, we can delegate the pattern or feature extrac tion job to deep neural networks. As introduced in the previous lecture “Deep Learning
for Computer Vision,” the slide “Understand feature maps: CAPTCHA recognition”
shows that a typical architecture for the task consists of two parts:
1. A backbone model to extract a feature map from the captcha image, and
2. A certain amount of prediction heads to interpret the feature map to readable
forms.
We will follow this architecture in this assignment. I encourage you to search open source solutions and learn from their experience. Here we follow this Kaggle post by
Ashadullah Shawon.
PT| Use capts train as the training dataset, capts val as the validation dataset, and Keras
as the deep learning framework, referring to Shawon’s solution, provide the training code
train.py that fulfills the following requirements. “Copy and paste” the codes from the
original post is allowed, as well as other AI-generated codes.
2
2.3. Example: A practical model S. Qin
1. The maximal number for epochs should be 10. Considering some students
will train the model by CPU, it is fair to limit the number of epochs, so the training
time for the model should be less than half an hour.
2. The accuracy for one digit should be no less than 30% after training for
10 epochs. The training outputs contain four accuracies respective to the four
digits. Since they are similar, you will only need to examine one of them. Keep in
mind that 30% for one digit indicates that the overall accuracy for the recognition
is only 0.3
4 = 0.81%. Such a low accuracy is not useful for cracking the captcha.
However, on the one hand, you may need a GPU to experiment on a practical
solution; on the other hand, a wild guess for a 0–9 digit has an accuracy of 10%,
so if your model’s accuracy can reach 30% after 10 epochs, it already indicates
the model learns from the training set. Hint: if the accuracy for one digit keeps
wandering around 0.1 but not increasing in the first two or three epochs, it is the
signal that you should modify somewhere in your code and try again.
3. The trained model should be saved as a file my model.keras after training.
Though, this model file my model.keras doesn’t need to be uploaded.
Q1| Can we convert the captcha images to grayscale at the preprocessing stage before train ing? What is the possible advantage by doing that? If any, can you point out the
possible disadvantage?
Q2| After the 10-epoch training, what are your accuracies of one digit, for the training and
the validation datasets respectively?
Q3| Is the accuracy for the validation dataset lower than that for the training dataset? What
are the possible reasons?
Q4| How can we improve the model’s performance on the validation dataset? List at least
three different measures.
2.3 Example: A practical model
To demonstrate that the backbone–heads architecture can actually solve the real-world
captcha, I trained a relatively large model by an Nvidia GeForce RTX 30** GPU.
You may find in attached the model file 099**0.9956.keras and the inference code
inference.py. The accuracies versus training epochs are shown in Figure 2.2. The
inference code reads a randomly generated captcha, inferences the model, and compares
the predicted results with the targets. You can press “n” for the next captcha or “q” to
quit the program. You may need to pip install keras cv to run the code.
Q5| What kind of backbone did I use in the model 099**0.9956.keras?
Q6| The backbone’s pre-trained weights on the ImageNet 2012 dataset were loaded before
training. What is the possible advantage by doing that?
Q7| Why didn’t I use any dropout in the model? Guess the reason.
Q8| In Figure 2.2, you may have noticed that the accuracies rise very fast from 0 to 0.9, but
significantly slow from 0.95 to 0.99. Explain the phenomenon.
Q9| Using the same hardware (which means you can’t upgrade the GPU, for example), how
can we speed up the learning process of the model, i.e. the rate of convergence?
3
2.3. Example: A practical model S. Qin
0 200 40**00 800 1000
Epoch
0.2
0.4
0.6
0.8
1.0
Model Accuracies
digi0
digi1
digi2
digi3
Figure 2.2: Accuracies through 1000 epochs in training
Q10| Since the accuracy for one digit is about 99%, the overall accuracy for a captcha is
0.994 ≈ 96%. This performance would be better than humans. Can you propose some
methods that can even further improve the performance?
Please note that, not all the questions above have a definite answer. You may also
need to do some research as the course doesn’t cover all the details in class. The source
code for training this model and the reference answers will be available on Moodle or
sent by email after all the students completing the submission.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:IS3240代做、代寫c/c++,Java程序語言
  • 下一篇:DATA 2100代寫、代做Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        可以看av的网站久久看| 国产精品免费视频xxxx| 小黄鸭精品密入口导航| 国产区亚洲区欧美区| 国产欧美日韩综合一区在线播放| 亚洲午夜影视影院在线观看| 亚洲第一色中文字幕| 欧美大片国产精品| 亚洲激情在线观看| 国产欧美在线观看一区| 国产精品理论片| 欧美一级久久| 亚洲精品中文在线| 久久精品二区亚洲w码| 亚洲欧美国产精品专区久久| 欧美v国产在线一区二区三区| 久久―日本道色综合久久| 精品成人在线观看| 国产在线播放一区二区三区| 国产精品免费一区豆花| 一区二区在线看| 欧美fxxxxxx另类| 亚洲欧美激情精品一区二区| 黄色精品一区| 亚洲国产精品第一区二区| 久久av老司机精品网站导航| 国产一区二区三区在线免费观看| 亚洲欧美日韩直播| 亚洲久久一区二区| 国产精品五区| 国产精品jvid在线观看蜜臀| 欧美一区高清| 欧美一级大片在线免费观看| 欧美国产精品人人做人人爱| 欧美一区二区日韩| 国产精品嫩草影院一区二区| 欧美日韩亚洲一区二区三区在线观看| 国产精品亚洲综合天堂夜夜| 亚洲一区二区影院| 欧美福利视频在线观看| 欧美成人一区二区三区在线观看| 午夜精品国产更新| 久久视频这里只有精品| 亚洲免费视频中文字幕| 一区二区三区在线高清| 午夜精品视频一区| 欧美主播一区二区三区| 亚洲欧美日本国产有色| 欧美一区国产二区| 亚洲看片免费| 国产欧美精品国产国产专区| 亚洲在线成人精品| 中文在线资源观看网站视频免费不卡| 欧美日韩免费在线| 亚洲午夜国产成人av电影男同| 亚洲理论电影网| 亚洲午夜成aⅴ人片| 亚洲电影中文字幕| 国产精品成人一区二区网站软件| 国产亚洲一区二区三区在线播放| 欧美一区二区三区免费观看| 精品av久久久久电影| 一区二区三区你懂的| 亚洲人成网站精品片在线观看| 国产精品午夜春色av| 国语自产偷拍精品视频偷| 欧美乱人伦中文字幕在线| 黑人巨大精品欧美一区二区小视频| 精品999在线观看| 亚洲精品乱码久久久久久蜜桃91| 国产日韩欧美高清| 亚洲精品国产精品国自产观看| 亚洲国产精品黑人久久久| 亚洲国产一区在线| 欧美日韩高清在线观看| 激情小说另类小说亚洲欧美| 欧美一乱一性一交一视频| 国产精品热久久久久夜色精品三区| 久久久777| 亚洲美女黄色| 久久夜色精品国产欧美乱极品| 久久精彩免费视频| 久久国产欧美| 狠狠色噜噜狠狠狠狠色吗综合| 国产精品自拍三区| 日韩小视频在线观看| 国产日韩欧美在线| 国产小视频国产精品| 久久九九热re6这里有精品| 国产精品免费区二区三区观看| 国产精品无码专区在线观看| 久久精品亚洲精品国产欧美kt∨| 午夜国产精品视频免费体验区| 亚洲精品视频一区| 午夜视频在线观看一区二区| 午夜精品久久久久久99热| 一区二区三区久久久| 欧美欧美天天天天操| 国产精品手机在线| 国产精品chinese| 国产精品美女久久久久久2018| 欧美日韩一区二区视频在线观看| 亚洲国产成人不卡| 日韩视频一区二区| 亚洲精品久久久一区二区三区| 亚洲国产精品久久人人爱蜜臀| 国产欧美日本一区视频| 在线精品高清中文字幕| 免费久久精品视频| 欧美人在线观看| 国产精品丝袜xxxxxxx| 国产婷婷一区二区| 欧美日韩在线一区二区三区| 欧美激情片在线观看| 影音先锋国产精品| 国产欧美日韩综合精品二区| 亚洲专区一二三| 精品不卡一区二区三区| 欧美高清不卡在线| 亚洲一二三区精品| 欧美国产精品va在线观看| 亚洲高清在线观看一区| 亚洲高清久久网| 亚洲欧美激情在线视频| 欧美日本国产一区| 黄色影院成人| 亚洲理论在线观看| 欧美一区二区在线免费观看| 亚洲视频一区在线| 亚洲欧美日韩直播| 欧美成人黄色小视频| 亚洲精品国产无天堂网2021| 狠狠干成人综合网| 一区二区三区欧美日韩| 亚洲一区二区视频| 国产精品videossex久久发布| 久久av一区二区| 一本一道久久综合狠狠老精东影业| 裸体丰满少妇做受久久99精品| 久久久久久久久久久一区| 国产精品一区二区三区四区| 蜜臀a∨国产成人精品| 国外视频精品毛片| 欧美成人免费全部观看天天性色| 狠狠色丁香婷综合久久| 日韩亚洲一区二区| 欧美亚洲免费电影| 噜噜噜噜噜久久久久久91| 欧美午夜精品理论片a级大开眼界| 欧美精品在线观看一区二区| 久久字幕精品一区| 亚洲女同精品视频| 国产一区二区三区四区三区四| 亚洲网站在线播放| 久久av一区二区| 久久久久久久精| 欧美日韩视频免费播放| 激情久久久久久久| 亚洲黄页视频免费观看| 久久精品日产第一区二区三区| 久久久久成人精品免费播放动漫| 久久久www成人免费无遮挡大片| 亚洲影院色无极综合| 午夜精品福利视频|