日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CIS5200、代做Java/Python程序語言
代寫CIS5200、代做Java/Python程序語言

時間:2024-11-01  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CIS5200: Machine Learning Fall 2024
Homework 2
Release Date: October 9, 2024 Due Date: October 18, 2024
• HW2 will count for 10% of the grade. This grade will be split between the written (30 points)
and programming (40 points) parts.
• All written homework solutions are required to be formatted using LATEX. Please use the
template here. Do not modify the template. This is a good resource to get yourself more
familiar with LATEX, if you are still not comfortable.
• You will submit your solution for the written part of HW2 as a single PDF file via Gradescope.
The deadline is 11:59 PM ET. Contact TAs on Ed if you face any issues uploading your
homeworks.
• Collaboration is permitted and encouraged for this homework, though each student must
understand, write, and hand in their own submission. In particular, it is acceptable for
students to discuss problems with each other; it is not acceptable for students to look at
another student’s written Solutions when writing their own. It is also not acceptable to
publicly post your (partial) solution on Ed, but you are encouraged to ask public questions
on Ed. If you choose to collaborate, you must indicate on each homework with whom you
collaborated.
Please refer to the notes and slides posted on the website if you need to recall the material discussed
in the lectures.
1 Written Questions (30 points)
Problem 1: Gradient Descent (20 points)
Consider a training dataset S = {(x1, y1), . . . ,(xm, ym)} where for all i ∈ [m], ∥xi∥2 ≤ 1 and
yi ∈ {−1, 1}. Suppose we want to run regularized logistic regression, that is, solve the following
optimization problem: for regularization term R(w),
min
w m
1
mX
i=1
log  1 + exp  −yiw
⊤xi
 + R(w)
Recall: For showing that a twice differentiable function f is µ-strongly convex, it suffices to show
that the hessian satisfies: ∇2f ⪰ µI. Similarly to show hat a twice differentiable function f is
L-smooth, it suffices to show that the hessian satisfies: LI ⪰ ∇2f. Here I is the identity matrix of
the appropriate dimension.
1
1.1 (3 points) In the case where R(w) = 0, we know that the objective is convex. Is it strongly
convex? Explain your answer.
1.2 (3 points) In the case where R(w) = 0, show that the objective is **smooth.
1.3 (4 points) In the case of R(w) = 0, what is the largest learning rate that you can choose such
that the objective is non-increasing at each iteration? Explain your answer.
Hint: The answer is not 1/L for a L-smooth function.
1.4 (1 point) What is the convergence rate of gradient descent on this problem with R(w) = 0?
In other words, suppose I want to achieve F(wT +1) − F(w∗) ≤ ϵ, express the number of iterations
T that I need to run GD for.
Note: You do not need to reprove the convergence guarantee, just use the guarantee to provide the
rate.
1.5 (5 points) Consider the following variation of the ℓ2 norm regularizer called the weighted ℓ2
norm regularizer: for λ1, . . . , λd ≥ 0,
Show that the objective with R(w) as defined above is µ-strongly convex and L-smooth for µ =
2 minj∈[d] λj and L = 1 + 2 maxj∈[d] λj .
1.6 (4 points) If a function is µ-strongly convex and L-smooth, after T iterations of gradient
descent we have:
Using the above, what is the convergence rate of gradient descent on the regularized logistic re gression problem with the weighted ℓ2 norm penalty? In other words, suppose I want to achieve
∥wT +1 − w∗∥2 ≤ ϵ, express the number of iterations T that I need to run GD.
Note: You do not need to prove the given convergence guarantee, just provide the rate.
Problem 2: MLE for Linear Regression (10 points)
In this question, you are going to derive an alternative justification for linear regression via the
squared loss. In particular, we will show that linear regression via minimizing the squared loss is
equivalent to maximum likelihood estimation (MLE) in the following statistical model.
Assume that for given x, there exists a true linear function parameterized by w so that the label y
is generated randomly as
y = w
⊤x + ϵ
2
where ϵ ∼ N (0, σ2
) is some normally distributed noise with mean 0 and variance σ
2 > 0. In other
words, the labels of your data are equal to some true linear function, plus Gaussian noise around
that line.
2.1 (3 points) Show that the above model implies that the conditional density of y given x is
P p(y|x) = 1.
Hint: Use the density function of the normal distribution, or the fact that adding a constant to a
Gaussian random variable shifts the mean by that constant.
2.2 (2 points) Show that the risk of the predictor f(x) = E[y|x] is σ.
2.3 (3 points) The likelihood for the given data {(x1, y1), . . . ,(xm, ym)} is given by.
Lˆ(w, σ) = p(y1, . . . , ym|x1, . . . , xm) =
Compute the log conditional likelihood, that is, log Lˆ(w, σ).
Hint: Use your expression for p(y | x) from part 2.1.
2.4 (2 points) Show that the maximizer of log Lˆ(w, σ) is the same as the minimizer of the empirical
risk with squared loss, ˆR(w) = m
Hint: Take the derivative of your result from 2.3 and set it equal to zero.
2 Programming Questions (20 points)
Use the link here to access the Google Colaboratory (Colab) file for this homework. Be sure to
make a copy by going to “File”, and “Save a copy in Drive”. As with the previous homeworks, this
assignment uses the PennGrader system for students to receive immediate feedback. As noted on
the notebook, please be sure to change the student ID from the default ‘99999999’ to your 8-digit
PennID.
Instructions for how to submit the programming component of HW 2 to Gradescope are included
in the Colab notebook. You may find this PyTorch linear algebra reference and this general
PyTorch reference to be helpful in perusing the documentation and finding useful functions for
your implementation.


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代寫MMME4056、代做MATLAB編程設計
  • 下一篇:CSCI 201代做、代寫c/c++,Python編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        久久成人这里只有精品| 欧美精品在线网站| 激情五月综合色婷婷一区二区| 一区二区欧美在线| 久久黄色级2电影| 亚洲激情视频网| 亚洲美女福利视频网站| 欧美电影在线免费观看网站| 好男人免费精品视频| 欧美成人免费va影院高清| 久久久精品999| 欧美激情综合亚洲一二区| 男同欧美伦乱| 国产精品成人免费| 激情视频一区| 国产一区二区三区四区在线观看| 一区二区在线视频播放| 欧美精品日日鲁夜夜添| 国产欧美一区二区色老头| 激情国产一区二区| 这里只有精品在线播放| 欧美一区二区三区在线免费观看| 亚洲男女毛片无遮挡| 国产精品每日更新| 日韩视频一区二区三区在线播放| 国产精品夜色7777狼人| 狠狠色狠狠色综合系列| 欧美国产日韩一二三区| 女人色偷偷aa久久天堂| 一区二区福利| 久久精品国产第一区二区三区| 欧美自拍丝袜亚洲| 国产麻豆一精品一av一免费| 女人色偷偷aa久久天堂| 欧美国产一区二区三区激情无套| 香港成人在线视频| 国内精品久久久久伊人av| 欧美激情一区二区| 亚洲国产一区二区三区高清| 一区二区国产日产| 最新中文字幕一区二区三区| 国产免费观看久久黄| 国产精品日韩电影| 在线中文字幕日韩| 一色屋精品视频在线观看网站| 国产亚洲女人久久久久毛片| 欧美日韩国产a| 欧美日韩视频一区二区| 日韩一本二本av| 91久久久亚洲精品| 久久激情视频久久| 久久精品免费播放| 亚洲美女在线国产| 亚洲黄色尤物视频| 国产日韩视频一区二区三区| 精品动漫3d一区二区三区| 国产精品激情电影| 久久午夜视频| 国产精品xxxxx| 欧美日韩在线播放一区| 欧美日韩一级黄| 亚洲欧美一区二区视频| 亚洲国产精品va在线观看黑人| 激情久久五月天| 久久高清福利视频| 国产精品视频免费在线观看| 国产午夜精品理论片a级探花| 亚洲一区二区三区中文字幕在线| 久久久久久久高潮| 在线视频日韩| 国产精品久久777777毛茸茸| 在线日韩av| 欧美激情精品久久久久久黑人| 亚洲视频在线观看| 欧美一级成年大片在线观看| 欧美大片网址| 欧美日韩精品一区二区三区四区| 国产精品久久久久婷婷| 国内精品伊人久久久久av影院| 久久gogo国模啪啪人体图| 久久九九国产精品| 亚洲综合成人在线| 欧美视频你懂的| 欧美婷婷六月丁香综合色| 在线观看国产一区二区| 久久综合国产精品| 欧美亚洲三区| 欧美网站在线| 亚洲一区二区成人在线观看| 国内精品国产成人| 欧美四级剧情无删版影片| 国产又爽又黄的激情精品视频| 韩国av一区二区三区四区| 亚洲精品乱码久久久久久黑人| 国产精品麻豆成人av电影艾秋| 国产精品嫩草99a| 亚洲精品一区在线观看| 久久久无码精品亚洲日韩按摩| 亚洲二区三区四区| 亚洲欧美成人一区二区在线电影| 先锋亚洲精品| 亚洲一区不卡| 国产免费成人| 新片速递亚洲合集欧美合集| 久久精品一区蜜桃臀影院| 亚洲欧美另类综合偷拍| 亚洲免费人成在线视频观看| 久久嫩草精品久久久精品| 亚洲在线观看免费| 亚洲日本欧美天堂| 国产精品麻豆欧美日韩ww| av成人免费| 亚洲美女视频在线免费观看| 亚洲图片欧洲图片av| 亚洲视频每日更新| 欧美一区二区性| 亚洲欧洲99久久| 欧美aⅴ99久久黑人专区| 欧美日韩精品不卡| 亚洲精品在线一区二区| 欧美精品1区| 精品va天堂亚洲国产| 国内一区二区在线视频观看| 欧美成人日韩| 久久麻豆一区二区| 91久久久久| 亚洲精品一区二区三区福利| 亚洲一区二区伦理| 久久久精品性| 久久久一区二区| 欧美一区二区视频观看视频| 亚洲欧美在线一区| 国产欧美日韩伦理| 午夜精品视频在线观看一区二区| 欧美在线网址| 亚洲一区二区三区在线观看视频| 亚洲福利视频网站| 精品99一区二区三区| 欧美日韩123| 国产精品美女主播在线观看纯欲| 久久久女女女女999久久| 欧美日韩爆操| 欧美在线999| 在线观看久久av| 亚洲综合三区| 国产区精品视频| 另类人畜视频在线| 亚洲综合成人婷婷小说| 欧美三级日韩三级国产三级| 欧美午夜在线| 午夜国产精品影院在线观看| 一本色道久久综合亚洲二区三区| 国内精品一区二区三区| 老司机午夜精品视频| 欧美福利小视频| 国产精品一二| 欧美一级精品大片| 一本色道久久综合亚洲精品高清| 欧美一区二区三区四区夜夜大片| 欧美亚洲一区在线| 国产欧美日韩在线播放| 亚洲福利视频网| 国产一区二区三区在线播放免费观看| 欧美色综合天天久久综合精品|