日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CENG 2310、代寫matlab設計編程
代做CENG 2310、代寫matlab設計編程

時間:2024-10-27  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



BIEN/CENG 2310
MODELING FOR CHEMICAL AND BIOLOGICAL ENGINEERING
HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY, FALL 2024
HOMEWORK #3 (DUE OCT. 28, 2024)
1. In this problem, we will simulate the motion of a planet orbiting the sun:
As shown, we place the sun is located at the origin, and the aphelion (the point at which the planet is farthest away from the sun) is located on the positive w**9;-axis. At time w**5;, the planet is
located at the coordinate (w**9;, 𝑦) and its distance from the sun is w**3; = √w**9;2 + 𝑦2. We can model the motion of the planet as a set of two second-order ODEs:
𝑑2w**9; = −𝐺𝑀 ( w**9; ) 𝑑w**5;2 w**3;3
𝑑2𝑦 = −𝐺𝑀 ( 𝑦 ) 𝑑w**5;2 w**3;3
where 𝐺 is the gravitational constant, 𝑀 is the mass of the sun, and the combination 𝐺𝑀 is equal to 2.94 × 10−4 AU3d−2. (For this problem, we will use the time unit of days (d), and the length unit of astronomical units (AU), which is defined as the average distance from the Earth to the sun, about 149.6 × 106 km. ) We will choose the initial location of the planet to be the aphelion, namely, w**9;(w**5; = 0) = 𝑅0, 𝑦(w**5; = 0) = 0. We also know that, since the orbit is an
ellipse, at the aphelion 𝑑w**9;| = 0. The speed of the planet at the aphelion is 𝑑𝑦| = w**7;0. 𝑑w**5; w**5;=0 𝑑w**5; w**5;=0
  
(a) Write a MATLAB program to solve the set of two second-order ODEs as an initial value problem. Allow the user to specify 𝑅0, the distance of the planet from the sun at the aphelion, and w**7;0, the speed of the planet at the aphelion.
The program should stop when the planet returns to the aphelion, and output the period 𝜏, the time it takes to complete one cycle. Your function definition should be:
                   function tau = solarIVP(R0, v0, showplot)
If showplot is set to true, provide a plot that shows the planet (a blue circle) moving around the sun (a red circle) as a movie. The speed at which the planet moves in the movie should be proportional to the speed it actually moves in orbit around the sun.
(b) Suppose we have a planet for which we can measure its distance from the sun at the aphelion, 𝑅0, and the period 𝜏 of its orbit. Solve the boundary value problem to determine its speed at its aphelion w**7;0, using the shooting method. Your function definition should be:
                        function v0 = solarBVP(R0, tau)
There is no need to produce any plot or movie for this part.
Hint: A good initial guess of w**7;0 is √𝐺𝑀/𝑅0. You may call your function from Part (a). Some data to test your program (do NOT expect exact match):
     Planet
Mercury Earth Mars
𝑹𝟎 /𝐀𝐔
0.46670 1.016** 1.6662
𝝉/𝐝
87.969 365.25 687.98
𝒗𝟎 /(𝐀𝐔/𝐝)
0.02269 0.01692 0.01271
                 DELIVERABLES:
Submit your programs solarIVP.m and solarBVP.m. No need to provide any write-up or plot for this question.

2. To help cool down computer chips, heat sinks like the one shown below are often employed to carry away the heat generated more efficiently:
Consider one of the metal pins, represented in the following schematic diagram:
   Convection
where the temperature 𝑇(w**5;, w**9;) is a function of both time and location (measured axially from the root of the pin), 𝛼 is the thermal diffusivity that measures heat conduction in the metal, ҵ**; is a parameter that measures heat convection from the metal pin to the surrounding air, and 𝑇 is the temperature of the air around the pin.
(a) Suppose we are only interested in the steady-state temperature profile of the pin, i.e., when the computer chip has been running continuously for a while, and ejects a constant flux of heat to the pin. The PDE can then be simplified to a second-order ODE for 𝑇(w**9;):
        Hot computer chip at constant
Air at constant temperature 𝑇 𝑎
Metal pin
 𝑎
temperature 𝑇 𝑐
0
Conduction
 𝐿 w**9;
Its temperature profile can be described by the following partial differential equation (PDE):
with the boundary conditions:
𝜕𝑇 = 𝛼 (𝜕2𝑇) − ҵ**;(𝑇 − 𝑇 )
𝜕w**5; 𝜕w**9;2
𝑎
0=𝛼(𝑑2𝑇)−ҵ**;(𝑇−𝑇 )
𝑇(w**9; = 0) = 𝑇 𝑐
𝑑𝑇| =0 𝑑w**9; w**9;=𝐿
𝑑w**9;2
𝑎
where 𝑇 is the computer chip’s temperature, and 𝐿 is the length of the pin. (Here we are 𝑐
assuming that the “tip” of the metal pin is small compared to its length, so that the heat loss at the tip (in the +w**9; direction) would be negligible.)
>
> > >

Solve this boundary value problem by the finite difference method, dividing the pin’s length into 𝑛 equal pieces. Your function definition should be:
function dTdx0 = heatSinkSteady(alpha, beta, Ta, Tc, L, n)
The program should plot the steady-state temperature profile 𝑇 vs. w**9;, and return the value of 𝑑𝑇| . (This value is proportional to the maximum heat rate that can be carried
𝑑w**9; w**9;=0
away by the heat sink while keeping the chip temperature constant.)
(b) Your model is helpful for designing a heat sink. Given that 𝛼 = 0.001 cm2/s, ҵ**; = 0.03 s−1,
𝑇 =300K,𝑇 =340K,whatvalueof𝐿(thelengthofthepin)wouldyouchoose?Explain 𝑎𝑐
your answer.
(c) Solve the PDE for the transient behavior of the heat sink (i.e. without assuming steady
state) using the method of lines. The initial temperature of the whole metal pin is 𝑇 . For 𝑎
the boundary conditions, this time, instead of fixing the computer chip temperature at 𝑇 , 𝑐
we will assume that the heat flux ejected from the computer chip is constant at the steady state value, i.e. the value of 𝑑𝑇| you get from running the program in Part (a). Stop the
𝑑w**9; w**9;=0
program when it reaches steady state, and make two plots, a 3-D plot of 𝑇 vs. w**9; vs. w**5;, and
a “contour plot” of temperature profiles at 10 different time points overlaid on the same plot. Your function definition should be:
function [] = heatSinkTransient(alpha, beta, Ta, Tc, L, n)
 DELIVERABLES:
Submit your programs heatSinkSteady.m for Part (a) and heatSinkTransient.m for Part (c). For both, we will set up the discretization schemes and the boundary conditions in class, to help you get started.
Also submit the write-up for Part (b), which should come with a plot to justify your answer.

3. In this problem we will model the so-called “diffusion disc assay” for measuring the effectiveness of an antibiotic to stop bacterial growth. A small disc with antibiotic is placed in the center of the agar plate with bacterial culture, and over time, the antibiotic will diffuse outwards. If the antibiotic is effective, it will stop the bacteria from growing near the disc, resulting in an inhibition zone. An antibiotic’s effectiveness is defined by the concentration required to inhibit bacterial growth, called the minimum inhibitory concentration (MIC); the lower the MIC, the more effective the antibiotic is. In this assay, the size of the inhibition zone measured at a given time after applying the disc is used to calculate the MIC.
 As shown, the agar plate is circular, and we place the origin at its center. The radius of the plate is 𝑅, and the radius of the antibiotic disc is 𝜀. At time w**5; = 0, we place the antibiotic disc, and the concentration of the antibiotic at w**3; ≤ 𝜀 is assumed to be constant at 𝐶𝑑𝑖w**4;𝑐 at all times. As the antibiotic diffuses outwards, the concentration of the antibiotic, 𝐶(w**5;, w**3;), as a function of time w**5; and radial distance from the center, w**3;, can be modeled by a PDE. At time w**5; = w**5;𝑓, we measure the radius of the inhibition zone, 𝑅𝑧w**0;𝑛Ү**;. The MIC is equal to 𝐶(w**5; = w**5;𝑓,w**3; = 𝑅𝑧w**0;𝑛Ү**;).
(a) By writing a balance equation for the antibiotic for the ring-shaped control volume on the next page, taking the limit of ∆w**3; → 0, and applying Fick’s Law, show that the diffusion can be described by the following PDE:
𝜕𝐶 𝐷(𝜕2𝐶+1𝜕𝐶) 𝜕w**5; = { 𝜕w**3;2 w**3; 𝜕w**3;
0
where 𝐶(w**5;, w**3;) is the concentration of the antibiotic at time w**5; and radial distance w**3; from the
center, 𝐷 is the diffusivity of the antibiotic in agar.
State any assumption(s). Also, write down suitable initial conditions and boundary conditions. Note that for boundary conditions, it makes sense to impose “no flux” boundary conditions at w**3; = 𝑅 (the edge of the plate) and at w**3; = 0 (center of the plate).
  𝑓w**0;w**3; w**3;>𝜀 𝑓w**0;w**3; w**3; ≤ 𝜀
   Hint:
lim (w**9;+∆w**9;)𝑓(w**9;+∆w**9;)−w**9;𝑓(w**9;)= 𝑑 (w**9;𝑓) ∆w**9;→0 ∆w**9; 𝑑w**9;
 
(b) To solve this PDE by the “Method of Lines” in MATLAB, we will divide the space domain 0 ≤ w**3; ≤ 𝑅 equally into 𝑛 pieces of width h, and call the concentrations at the boundary of adjacent pieces 𝐶1(w**5;), 𝐶2(w**5;), 𝐶3(w**5;), ... , 𝐶𝑛(w**5;), as shown below:
Important note: We will not simulate the point at exactly w**3; = 0, since it will result in a division by zero. Instead, we can assume that the concentration there is equal to 𝐶1(w**5;), in line with our “no flux” boundary condition. For our purpose, it will not matter, since that point will have constant concentration at 𝐶𝑑𝑖w**4;𝑐 anyway.
Let 𝐶Ү**; (w**5;) be the rightmost node within the disc, i.e., Ү**;h ≤ 𝜀 . Write down the ODEs for 𝐶1(w**5;), 𝐶2(w**5;), 𝐶3(w**5;), ... , 𝐶𝑛(w**5;), using finite difference approximations for 𝜕2𝐶⁄𝜕w**3;2 and 𝜕𝐶⁄𝜕w**3;.
(c) Complete the provided MATLAB program (antibioticDisc_template.m) to solve this PDE. Theprogramshouldacceptinputparametersof𝐷,𝑅,𝐶𝑑𝑖w**4;𝑐,𝜀,w**5;𝑓,and𝑅𝑧w**0;𝑛Ү**;,plot𝐶(w**5;,w**3;) in a 3D surface plot, and return the MIC, i.e., an estimate as close to 𝐶(w**5; = w**5;𝑓, w**3; = 𝑅𝑧w**0;𝑛Ү**;) as possible. Rename your program antibioticDisc.m and submit on Canvas.
For your testing, the following are some sample plots (with parameters specified in the titles). Note the asterisk marking the point 𝐶(w**5; = w**5;𝑓, w**3; = 𝑅𝑧w**0;𝑛Ү**;).
  
  DELIVERABLES:
Submit your type-written or scanned hand-written write-up for Parts (a) and (b).
Submit your program antibioticDisc.m for Part (c). To save you some trouble in plotting, you should start from the antibioticDisc_template.m provided to you, and only add your code where it is marked “% Add code here”.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:AME 209代做、代寫Matlab 程序設計
  • 下一篇:CAN201代做、python語言程序代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产精品a久久久久久| 久久偷窥视频| 国产在线拍揄自揄视频不卡99| 欧美成人免费全部观看天天性色| 免费看黄裸体一级大秀欧美| 99国产欧美久久久精品| 国产精品豆花视频| 国产一区二区黄色| 亚洲激情av| 欧美日韩中文字幕| 欧美.com| 亚洲人成在线播放网站岛国| 在线观看成人小视频| 亚洲色图制服丝袜| 亚洲欧美中文在线视频| 亚洲香蕉伊综合在人在线视看| 欧美激情在线免费观看| 亚洲国产日韩欧美在线图片| 欧美精品福利视频| 亚洲精品国产精品国产自| 久久久久久成人| 国产欧美一区二区白浆黑人| 亚洲在线观看视频网站| 欧美调教视频| 久久精品国产第一区二区三区最新章节| 国产女主播在线一区二区| 香蕉尹人综合在线观看| 亚洲另类在线视频| 亚洲激情自拍| 国产精品欧美风情| 性色一区二区三区| 国产一区av在线| 国产精品美女久久久| 久久精品亚洲热| 国产精品一区二区三区四区| 欧美性大战久久久久久久蜜臀| 亚洲激情欧美| 亚洲欧洲精品一区二区三区不卡| 黄色av一区| 美日韩精品视频免费看| 欧美中文在线字幕| 亚洲国产中文字幕在线观看| 欧美一区二区三区的| 久久综合狠狠综合久久激情| 欧美日韩一区精品| 亚洲免费精彩视频| 亚洲欧美日韩精品久久久久| 欧美在线影院| 国产精品国产三级国产专播精品人| 一个色综合av| 日韩亚洲一区在线播放| 亚洲电影免费观看高清完整版在线| 中日韩美女免费视频网址在线观看| 欧美日本不卡| 欧美激情小视频| 亚洲六月丁香色婷婷综合久久| 亚洲福利视频网| 亚洲视频一区二区免费在线观看| 在线观看视频亚洲| 国产精品亚洲综合天堂夜夜| 欧美区视频在线观看| 欧美一区二区三区在线免费观看| 国产精品亚洲第一区在线暖暖韩国| 欧美日韩一区二区三区高清| 欧美与欧洲交xxxx免费观看| 亚洲欧美精品一区| 亚洲在线观看视频网站| 久久成人综合网| 亚洲第一搞黄网站| 国产字幕视频一区二区| 国产性做久久久久久| 伊人精品视频| 国产一区二区| 亚洲一二三区视频在线观看| 久久尤物电影视频在线观看| 亚洲激情不卡| 欧美激情中文字幕乱码免费| 亚洲人成在线观看一区二区| 亚洲欧美文学| 欧美v亚洲v综合ⅴ国产v| 国产精品一区二区男女羞羞无遮挡| 小辣椒精品导航| 欧美日韩成人一区| 亚洲欧美日韩精品久久奇米色影视| 欧美一区二区三区在线观看| 欧美不卡视频一区发布| 欧美日韩另类字幕中文| 久久麻豆一区二区| 午夜精品福利一区二区蜜股av| 日韩亚洲精品在线| 免费观看日韩| 在线综合欧美| 国产日韩欧美亚洲一区| 亚洲精品久久久久中文字幕欢迎你| 亚洲精品欧美| 欧美一区二区三区免费看| 国产色爱av资源综合区| 在线观看欧美日韩国产| 欧美大胆人体视频| 欧美精品videossex性护士| 欧美三级视频在线播放| 在线视频欧美日韩精品| 亚洲美女福利视频网站| 亚洲欧美在线观看| 欧美日韩一区三区| 国产精品一级二级三级| 欧美亚洲日本国产| 亚洲乱亚洲高清| 久久亚洲影音av资源网| 毛片一区二区| 国产精品久久久久99| 国产亚洲精品aa午夜观看| 亚洲精品美女久久久久| 一本色道久久加勒比精品| 欧美激情亚洲视频| 欧美在线视频一区二区| 亚洲黄页视频免费观看| 欧美一区二区视频免费观看| 欧美福利网址| 欧美大秀在线观看| 亚洲国产综合在线看不卡| 欧美一区二区观看视频| 久久综合九色综合网站| 欧美激情精品久久久久久变态| 国产精品久久久久久影视| 亚洲欧美日韩国产另类专区| 亚洲精品资源| 欧美在线综合视频| 欧美亚洲一区二区三区| 伊人夜夜躁av伊人久久| 在线看成人片| 国产精品视频在线观看| 狠狠爱成人网| 欧美一级专区| 欧美看片网站| 国产精品私拍pans大尺度在线| 国产精品女主播在线观看| 性欧美大战久久久久久久免费观看| 久久深夜福利免费观看| 国产精品久久久久一区二区| 99精品欧美一区| 欧美成人官网二区| 亚洲激精日韩激精欧美精品| 另类专区欧美制服同性| 欧美欧美午夜aⅴ在线观看| 久久免费观看视频| 国产综合精品| 欧美专区在线| 亚洲国产欧美一区| 国产日韩欧美不卡| 国产欧美一区二区视频| 久久精品在线免费观看| 国产精品一区一区三区| 欧美日韩国产精品一区二区亚洲| 亚洲激精日韩激精欧美精品| 亚洲图片欧美日产| 亚洲欧美大片| 欧美成人精品一区二区| 欧美大片第1页| 欧美视频观看一区| 香蕉久久夜色精品国产| 欧美国产亚洲精品久久久8v| 一区二区三区久久| 欧美一区永久视频免费观看|