日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CENG 2310、代寫matlab設計編程
代做CENG 2310、代寫matlab設計編程

時間:2024-10-27  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



BIEN/CENG 2310
MODELING FOR CHEMICAL AND BIOLOGICAL ENGINEERING
HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY, FALL 2024
HOMEWORK #3 (DUE OCT. 28, 2024)
1. In this problem, we will simulate the motion of a planet orbiting the sun:
As shown, we place the sun is located at the origin, and the aphelion (the point at which the planet is farthest away from the sun) is located on the positive w**9;-axis. At time w**5;, the planet is
located at the coordinate (w**9;, 𝑦) and its distance from the sun is w**3; = √w**9;2 + 𝑦2. We can model the motion of the planet as a set of two second-order ODEs:
𝑑2w**9; = −𝐺𝑀 ( w**9; ) 𝑑w**5;2 w**3;3
𝑑2𝑦 = −𝐺𝑀 ( 𝑦 ) 𝑑w**5;2 w**3;3
where 𝐺 is the gravitational constant, 𝑀 is the mass of the sun, and the combination 𝐺𝑀 is equal to 2.94 × 10−4 AU3d−2. (For this problem, we will use the time unit of days (d), and the length unit of astronomical units (AU), which is defined as the average distance from the Earth to the sun, about 149.6 × 106 km. ) We will choose the initial location of the planet to be the aphelion, namely, w**9;(w**5; = 0) = 𝑅0, 𝑦(w**5; = 0) = 0. We also know that, since the orbit is an
ellipse, at the aphelion 𝑑w**9;| = 0. The speed of the planet at the aphelion is 𝑑𝑦| = w**7;0. 𝑑w**5; w**5;=0 𝑑w**5; w**5;=0
  
(a) Write a MATLAB program to solve the set of two second-order ODEs as an initial value problem. Allow the user to specify 𝑅0, the distance of the planet from the sun at the aphelion, and w**7;0, the speed of the planet at the aphelion.
The program should stop when the planet returns to the aphelion, and output the period 𝜏, the time it takes to complete one cycle. Your function definition should be:
                   function tau = solarIVP(R0, v0, showplot)
If showplot is set to true, provide a plot that shows the planet (a blue circle) moving around the sun (a red circle) as a movie. The speed at which the planet moves in the movie should be proportional to the speed it actually moves in orbit around the sun.
(b) Suppose we have a planet for which we can measure its distance from the sun at the aphelion, 𝑅0, and the period 𝜏 of its orbit. Solve the boundary value problem to determine its speed at its aphelion w**7;0, using the shooting method. Your function definition should be:
                        function v0 = solarBVP(R0, tau)
There is no need to produce any plot or movie for this part.
Hint: A good initial guess of w**7;0 is √𝐺𝑀/𝑅0. You may call your function from Part (a). Some data to test your program (do NOT expect exact match):
     Planet
Mercury Earth Mars
𝑹𝟎 /𝐀𝐔
0.46670 1.016** 1.6662
𝝉/𝐝
87.969 365.25 687.98
𝒗𝟎 /(𝐀𝐔/𝐝)
0.02269 0.01692 0.01271
                 DELIVERABLES:
Submit your programs solarIVP.m and solarBVP.m. No need to provide any write-up or plot for this question.

2. To help cool down computer chips, heat sinks like the one shown below are often employed to carry away the heat generated more efficiently:
Consider one of the metal pins, represented in the following schematic diagram:
   Convection
where the temperature 𝑇(w**5;, w**9;) is a function of both time and location (measured axially from the root of the pin), 𝛼 is the thermal diffusivity that measures heat conduction in the metal, ҵ**; is a parameter that measures heat convection from the metal pin to the surrounding air, and 𝑇 is the temperature of the air around the pin.
(a) Suppose we are only interested in the steady-state temperature profile of the pin, i.e., when the computer chip has been running continuously for a while, and ejects a constant flux of heat to the pin. The PDE can then be simplified to a second-order ODE for 𝑇(w**9;):
        Hot computer chip at constant
Air at constant temperature 𝑇 𝑎
Metal pin
 𝑎
temperature 𝑇 𝑐
0
Conduction
 𝐿 w**9;
Its temperature profile can be described by the following partial differential equation (PDE):
with the boundary conditions:
𝜕𝑇 = 𝛼 (𝜕2𝑇) − ҵ**;(𝑇 − 𝑇 )
𝜕w**5; 𝜕w**9;2
𝑎
0=𝛼(𝑑2𝑇)−ҵ**;(𝑇−𝑇 )
𝑇(w**9; = 0) = 𝑇 𝑐
𝑑𝑇| =0 𝑑w**9; w**9;=𝐿
𝑑w**9;2
𝑎
where 𝑇 is the computer chip’s temperature, and 𝐿 is the length of the pin. (Here we are 𝑐
assuming that the “tip” of the metal pin is small compared to its length, so that the heat loss at the tip (in the +w**9; direction) would be negligible.)
>
> > >

Solve this boundary value problem by the finite difference method, dividing the pin’s length into 𝑛 equal pieces. Your function definition should be:
function dTdx0 = heatSinkSteady(alpha, beta, Ta, Tc, L, n)
The program should plot the steady-state temperature profile 𝑇 vs. w**9;, and return the value of 𝑑𝑇| . (This value is proportional to the maximum heat rate that can be carried
𝑑w**9; w**9;=0
away by the heat sink while keeping the chip temperature constant.)
(b) Your model is helpful for designing a heat sink. Given that 𝛼 = 0.001 cm2/s, ҵ**; = 0.03 s−1,
𝑇 =300K,𝑇 =340K,whatvalueof𝐿(thelengthofthepin)wouldyouchoose?Explain 𝑎𝑐
your answer.
(c) Solve the PDE for the transient behavior of the heat sink (i.e. without assuming steady
state) using the method of lines. The initial temperature of the whole metal pin is 𝑇 . For 𝑎
the boundary conditions, this time, instead of fixing the computer chip temperature at 𝑇 , 𝑐
we will assume that the heat flux ejected from the computer chip is constant at the steady state value, i.e. the value of 𝑑𝑇| you get from running the program in Part (a). Stop the
𝑑w**9; w**9;=0
program when it reaches steady state, and make two plots, a 3-D plot of 𝑇 vs. w**9; vs. w**5;, and
a “contour plot” of temperature profiles at 10 different time points overlaid on the same plot. Your function definition should be:
function [] = heatSinkTransient(alpha, beta, Ta, Tc, L, n)
 DELIVERABLES:
Submit your programs heatSinkSteady.m for Part (a) and heatSinkTransient.m for Part (c). For both, we will set up the discretization schemes and the boundary conditions in class, to help you get started.
Also submit the write-up for Part (b), which should come with a plot to justify your answer.

3. In this problem we will model the so-called “diffusion disc assay” for measuring the effectiveness of an antibiotic to stop bacterial growth. A small disc with antibiotic is placed in the center of the agar plate with bacterial culture, and over time, the antibiotic will diffuse outwards. If the antibiotic is effective, it will stop the bacteria from growing near the disc, resulting in an inhibition zone. An antibiotic’s effectiveness is defined by the concentration required to inhibit bacterial growth, called the minimum inhibitory concentration (MIC); the lower the MIC, the more effective the antibiotic is. In this assay, the size of the inhibition zone measured at a given time after applying the disc is used to calculate the MIC.
 As shown, the agar plate is circular, and we place the origin at its center. The radius of the plate is 𝑅, and the radius of the antibiotic disc is 𝜀. At time w**5; = 0, we place the antibiotic disc, and the concentration of the antibiotic at w**3; ≤ 𝜀 is assumed to be constant at 𝐶𝑑𝑖w**4;𝑐 at all times. As the antibiotic diffuses outwards, the concentration of the antibiotic, 𝐶(w**5;, w**3;), as a function of time w**5; and radial distance from the center, w**3;, can be modeled by a PDE. At time w**5; = w**5;𝑓, we measure the radius of the inhibition zone, 𝑅𝑧w**0;𝑛Ү**;. The MIC is equal to 𝐶(w**5; = w**5;𝑓,w**3; = 𝑅𝑧w**0;𝑛Ү**;).
(a) By writing a balance equation for the antibiotic for the ring-shaped control volume on the next page, taking the limit of ∆w**3; → 0, and applying Fick’s Law, show that the diffusion can be described by the following PDE:
𝜕𝐶 𝐷(𝜕2𝐶+1𝜕𝐶) 𝜕w**5; = { 𝜕w**3;2 w**3; 𝜕w**3;
0
where 𝐶(w**5;, w**3;) is the concentration of the antibiotic at time w**5; and radial distance w**3; from the
center, 𝐷 is the diffusivity of the antibiotic in agar.
State any assumption(s). Also, write down suitable initial conditions and boundary conditions. Note that for boundary conditions, it makes sense to impose “no flux” boundary conditions at w**3; = 𝑅 (the edge of the plate) and at w**3; = 0 (center of the plate).
  𝑓w**0;w**3; w**3;>𝜀 𝑓w**0;w**3; w**3; ≤ 𝜀
   Hint:
lim (w**9;+∆w**9;)𝑓(w**9;+∆w**9;)−w**9;𝑓(w**9;)= 𝑑 (w**9;𝑓) ∆w**9;→0 ∆w**9; 𝑑w**9;
 
(b) To solve this PDE by the “Method of Lines” in MATLAB, we will divide the space domain 0 ≤ w**3; ≤ 𝑅 equally into 𝑛 pieces of width h, and call the concentrations at the boundary of adjacent pieces 𝐶1(w**5;), 𝐶2(w**5;), 𝐶3(w**5;), ... , 𝐶𝑛(w**5;), as shown below:
Important note: We will not simulate the point at exactly w**3; = 0, since it will result in a division by zero. Instead, we can assume that the concentration there is equal to 𝐶1(w**5;), in line with our “no flux” boundary condition. For our purpose, it will not matter, since that point will have constant concentration at 𝐶𝑑𝑖w**4;𝑐 anyway.
Let 𝐶Ү**; (w**5;) be the rightmost node within the disc, i.e., Ү**;h ≤ 𝜀 . Write down the ODEs for 𝐶1(w**5;), 𝐶2(w**5;), 𝐶3(w**5;), ... , 𝐶𝑛(w**5;), using finite difference approximations for 𝜕2𝐶⁄𝜕w**3;2 and 𝜕𝐶⁄𝜕w**3;.
(c) Complete the provided MATLAB program (antibioticDisc_template.m) to solve this PDE. Theprogramshouldacceptinputparametersof𝐷,𝑅,𝐶𝑑𝑖w**4;𝑐,𝜀,w**5;𝑓,and𝑅𝑧w**0;𝑛Ү**;,plot𝐶(w**5;,w**3;) in a 3D surface plot, and return the MIC, i.e., an estimate as close to 𝐶(w**5; = w**5;𝑓, w**3; = 𝑅𝑧w**0;𝑛Ү**;) as possible. Rename your program antibioticDisc.m and submit on Canvas.
For your testing, the following are some sample plots (with parameters specified in the titles). Note the asterisk marking the point 𝐶(w**5; = w**5;𝑓, w**3; = 𝑅𝑧w**0;𝑛Ү**;).
  
  DELIVERABLES:
Submit your type-written or scanned hand-written write-up for Parts (a) and (b).
Submit your program antibioticDisc.m for Part (c). To save you some trouble in plotting, you should start from the antibioticDisc_template.m provided to you, and only add your code where it is marked “% Add code here”.

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:AME 209代做、代寫Matlab 程序設計
  • 下一篇:CAN201代做、python語言程序代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    釘釘簽到打卡位置修改神器,2026怎么修改定位在范圍內
    釘釘簽到打卡位置修改神器,2026怎么修改定
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
  • 短信驗證碼 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产亚洲午夜高清国产拍精品| 国产日产精品一区二区三区四区的观看方式| 亚洲成人在线网| 久久精品国产第一区二区三区| 欧美成人a∨高清免费观看| 极品少妇一区二区| 伊人久久噜噜噜躁狠狠躁| 欧美专区在线| 老司机精品福利视频| 亚洲欧美日韩电影| 国产精品区一区二区三区| 在线精品国产成人综合| 美女诱惑黄网站一区| 欧美本精品男人aⅴ天堂| 国产精品高潮呻吟久久av黑人| 国产日韩欧美夫妻视频在线观看| 欧美日韩国产黄| 久久人人爽爽爽人久久久| 日韩一区二区电影网| 国产精品系列在线| 亚洲国产欧美一区二区三区久久| 国产综合18久久久久久| 久久xxxx精品视频| 国产精品xxxav免费视频| 欧美理论电影在线播放| 欧美精品国产一区| 国产日韩欧美综合一区| 最新日韩欧美| 国产精品久久久久一区二区三区| 欧美了一区在线观看| 国产精品你懂的| 国产亚洲在线| 欧美日韩美女在线| 亚洲第一精品夜夜躁人人躁| 午夜在线电影亚洲一区| 欧美日韩在线观看一区二区三区| 欧美三区视频| 99在线精品视频在线观看| 亚洲精品视频免费观看| 国产精品乱子乱xxxx| 欧美日韩91| 国产亚洲欧美一区在线观看| 国产精品美腿一区在线看| 亚洲宅男天堂在线观看无病毒| 麻豆国产精品一区二区三区| 欧美在线啊v一区| 一区二区三区四区五区视频| 国内精品久久久久影院薰衣草| 亚洲午夜成aⅴ人片| 亚洲三级电影在线观看| 欧美大学生性色视频| 亚洲精品一区二区三区蜜桃久| 亚洲精品视频二区| 欧美国产日韩免费| 亚洲高清视频的网址| 久久久久网站| 亚洲毛片视频| 永久91嫩草亚洲精品人人| 一区二区三区精密机械公司| 国产精品初高中精品久久| 影音先锋一区| 在线一区二区视频| 欧美一区在线直播| 亚洲网站在线看| 亚洲视频精品在线| 欧美三级特黄| 欧美成人精品三级在线观看| 激情亚洲成人| 欧美三区在线| 欧美精品日韩精品| 国产精品久久午夜夜伦鲁鲁| 久久国产直播| 日韩五码在线| 免费成年人欧美视频| 国产永久精品大片wwwapp| 国产精品家教| 欧美日韩中文字幕精品| 老牛国产精品一区的观看方式| 国产午夜精品麻豆| 亚洲欧洲一区二区在线播放| 欧美一区二区三区男人的天堂| 免费不卡欧美自拍视频| 欧美精品一区二区三| 日韩视频在线一区二区三区| 亚洲一区国产| 最新亚洲一区| 国产亚洲免费的视频看| 久久精品国产精品亚洲| 一区在线播放| 欧美性做爰猛烈叫床潮| 亚洲激情成人网| 久久精品欧美| 国产午夜精品一区二区三区欧美| 国产精品女主播一区二区三区| 亚洲尤物精选| 在线电影一区| 国产人成一区二区三区影院| 久久亚洲视频| 久久本道综合色狠狠五月| 午夜一区二区三视频在线观看| 这里是久久伊人| 亚洲电影免费观看高清完整版在线| 在线播放日韩| 国产亚洲精品高潮| 性伦欧美刺激片在线观看| 亚洲激情在线观看视频免费| 欧美日韩黄视频| 欧美伦理视频网站| 欧美日韩四区| 亚洲精品国产精品国自产观看| 欧美精品色综合| 亚洲午夜羞羞片| 精品二区视频| 久久久国产精品一区二区中文| 亚洲三级国产| 国产精品久久久久99| 欧美综合第一页| 欧美成人小视频| 亚洲第一区在线| 国内成人在线| 伊人久久噜噜噜躁狠狠躁| 国产婷婷成人久久av免费高清| 欧美大香线蕉线伊人久久国产精品| 欧美二区在线| 亚洲女同性videos| 国内精品久久久久久久97牛牛| 久久精品一级爱片| 国产乱子伦一区二区三区国色天香| 这里只有视频精品| 久久综合久久综合久久| 亚洲国产精品久久| 欧美女激情福利| 国产亚洲美州欧州综合国| 中文在线资源观看视频网站免费不卡| 亚洲美女区一区| 欧美日本在线| 国产日韩精品电影| 久久久91精品国产| 国产欧美一区二区三区在线看蜜臀| 伊人久久亚洲影院| 欧美一区二区三区精品电影| 一区二区日韩免费看| 国产精品美女www爽爽爽视频| 免费成人小视频| 亚洲欧美日韩国产一区| 欧美日韩精品二区| 亚洲欧美经典视频| 久久久999精品| 欧美裸体一区二区三区| 午夜久久久久| 亚洲欧美日韩网| 亚洲午夜性刺激影院| 国产精品亚洲不卡a| 激情综合激情| 欧美成人精品激情在线观看| 亚洲精品色图| 亚洲日本一区二区三区| 亚洲美女一区| 久久中文久久字幕| 欧美一区二区成人| 午夜精品短视频| 国产精品av一区二区| 亚洲三级免费电影| 国产欧亚日韩视频|