日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

FINM8006代寫、代做Python編程設計
FINM8006代寫、代做Python編程設計

時間:2024-10-13  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



FINM8006 Advanced Investment Assignment
Due 11/10/2024
1 Chinese A-Share Market
Stock market in China is often said to be heavily inffuenced by individual traders.
Size and liquidity therefore are long suspected to play important roles in Chinese
A-share market. Mutual fund industry has been developing in the recent years,
especially after 2016. In this exercise, we will analyze the Chinese market from
2012 to 2022.
1.1 Data Description
The data folder contains two zipped (.gz) csv ffles.
• monthly_returns_cn.csv.gz contains monthly stock and market returns
for stocks on Chinese market from 2010 to 2022.
– stkcd: stock code
– month: date of monthly end date
– ret: stock return
– mktret: market return
– rf: risk free rate
• monthly_characteristics_cn.csv.gz contains ffrm characteristics of
the shares traded each month from the market and earnings announcements.

stkcd: stock code
– priormonth: end of the month date when characteristics information
is known
– market_value: market cap (value) of stock in the month
– ep: EP ratio calculated as earnings divided by market cap
– amihud: average Amihud measure in a month. Amihud measure is a
measure of stock illiquidity, calculated as stock price change divided
by trading volume. The higher the value the lower a stock’s liquidity.
1.2 Your Tasks
11.2.1 Mean Variance
Suppose you inherited an amount of money (M) at the end of year 2020 and want
to invest it in a basket of stocks and risk free asset at the beginning of 2021.
stkcds of the stocks in your basket are ['600519', '002594', '002415',
'000333'] and the risk free rate is known at the beginning of 2021. You have
CRRA utility function of risk aversion    = 3. You estimate the return characteristics
 using data in the last 3 years prior to 2021.
1. What is your optimal share of M to invest in the stock basket?
2. What is the optimal share of M to invest in each stock if you decide to do
mean-variance investing?
3. What are the returns you expected to get and you will actually get (from
M, consider only the stock returns) in January 2021?
4. If you compose your stocks in the basket based on their relative market
caps at the end of 2020, what return (from M, consider only the stock
returns) in January 2021 will you get?
1.2.2 CAPM BETA
For each stock and month starting from January 2012, use the prior 24 month
to estimate CAPM   . You will require a ffrm-month to have at least 12 months
of prior data to estimate, otherwise the ffrm-month will be dropped from the
portfolio. From now on, your data will be ffrms with legitimate beta and other
characteristics information.
For each month starting from 2012, form 10 portfolios according to their CAPM
  , then plot the average realized monthly excess return against the average   
for the 10 portfolios. Add the CAPM line also to your graph. Please comment
on the graph you produce, what kind of the stocks are likely to be overvalued
or undervalued.
1.2.3 Size and EP Ratio
For each month starting from 2012, form 25 (5x5) portfolios by sorting stocks
according to size (proxied by market value) and EP ratio. Stock characteristics
in a month is its characteristics in the prior month. Calculate the value-weighted
returns and betas. Produce a within-size plot and a within-PE plot for the 25
portfolios by plotting mean excess return against CAPM as in the lecture notes.
Comment on your graphs.
1.2.3.1 Size and EP factors
You will divide your stocks into 6 (2X3) portfolios according to size and EP.
Returns in the portfolios are value-weighted. Then you will form your SMB
(size) factor by longing the equally-weighted portfolios of small stock portfolios
2and shorting the equally-weighted portfolios of big stock portfolios, form your
HML (EP) factor by longing the equally-weighted portfolios of high EP stock
portfolios and shorting the equally-weighted portfolios of low EP stock portfolios.
Plot the cumulative factor returns along with the cumulative market excess
return.
Run multi-factor models of market excess return, SMB and HML for each of the
25 portfolios you formed earlier, and get the factor loading. Produce within-size
and with-EP plots by plotting average portfolio excess returns against average
model predicted excess returns. You get model predicted excess returns from
factor loading and mean factor returns. Has the multi-factor loading improved
the model prediction?
1.2.4 Liquidity Premium
Is there liquidity premium and What is its dynamics? Let’s examine. In addition
 to the 2X3 sorting, we also sort independently into 5 portfolios according
to amihud. That is, we sort stockings into 2X3X5 portfolios of size, EP and
liquidity. Again, portfolio returns are value weighted. Finally, we form liquidity
 premium by longing the equally-weighted portfolios of high illiquidity
stock portfolios and shorting the equally-weighted portfolios of low illiquidity
stock portfolios. Calculate the time-series of liquidity premium, and plot the
cumulative returns of the premium. Comment on the graph you get.
1.3 Python Notes
You can use pandas to read zipped csv ffles. Notice that stkcd is a str, and
month is a date, they need to be speciffed in reading to have the correct data
type, such as the following:
monthly_returns = pd.read_csv('monthly_returns_cn.csv.gz',
parse_dates=['month'], dtype={'stkcd':'str'})
You will need statsmodels for regression. For rolling regression, you can use
a for loop as the backtesting workshop, or use RollingOLS in statsmodels.
To calculate things by group, the groupby method of pandas will be useful.
You can use apply following groupby to get results in a new data frame, or use
transform to add the results to the existing dataframe. Please see lecture notes
and pandas documentation online for details.
qcut method of pandas is handy for ffnding the cutoff and sorting dataframe
into groups. The following lambda function, when applied to x, put 10 group
labels, size0…size9 according to x.
lambda x: pd.qcut(x, 10, labels=['size'+str(x) for x in range(10)], retbins=False)
3

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp










 

掃一掃在手機打開當前頁
  • 上一篇:代寫SCIE1000、代做Python程序設計
  • 下一篇:CS439編程代寫、代做Java程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美一区二区精品久久911| 国内精品免费在线观看| 99在线视频精品| 欧美激情aaaa| 一区二区三区在线视频播放| 亚洲乱码精品一二三四区日韩在线| 激情五月***国产精品| 亚洲香蕉在线观看| 激情久久一区| 亚洲精品久久久久久久久久久久久| 美女国内精品自产拍在线播放| 久热re这里精品视频在线6| 国产精品久久久久77777| 欧美国产日韩一区| 欧美精品大片| 国产精品视频导航| 国产精品亚洲综合一区在线观看| 久久精品理论片| 午夜精品久久久| 欧美aaaaaaaa牛牛影院| 欧美日韩一区二区三区高清| 久久亚洲影音av资源网| 久久久噜噜噜| 国产亚洲欧美日韩美女| 国内精品模特av私拍在线观看| 亚洲区一区二| 在线一区二区视频| 欧美日韩免费网站| 一本色道久久精品| 欧美一区国产在线| 狼狼综合久久久久综合网| 欧美人交a欧美精品| 欧美国产综合一区二区| 欧美大尺度在线| 久久久久久综合| 亚洲一区中文字幕在线观看| 狠狠色狠狠色综合人人| 在线成人av网站| 亚洲一区二区在| 亚洲区一区二区三区| 国产精品theporn88| 欧美日韩成人网| 国内精品视频久久| 国产精品久久久久久久久果冻传媒| 亚洲第一中文字幕| 日韩系列在线| 亚洲美女av电影| 欧美日韩另类字幕中文| 国产精品免费一区二区三区在线观看| 国产精品日韩| 欧美在线观看天堂一区二区三区| 日韩午夜黄色| 狠狠狠色丁香婷婷综合激情| 亚洲电影成人| 亚洲精品视频一区| 亚洲精品视频免费在线观看| 亚洲精品国精品久久99热| 国产伦精品一区二区三区高清版| 久久婷婷麻豆| 久久久久国产精品一区| 欧美日一区二区在线观看| 国产精品分类| 欧美高清视频| 国自产拍偷拍福利精品免费一| 国产女精品视频网站免费| 亚洲免费高清| 在线成人激情| 亚洲欧洲另类| 亚洲欧美成人一区二区在线电影| 欧美午夜电影一区| 国产精品亚洲美女av网站| 亚洲大片在线| 亚洲精品国产日韩| 狠狠色香婷婷久久亚洲精品| 亚洲女性裸体视频| 亚洲大片一区二区三区| 国产亚洲精品久久久久婷婷瑜伽| 久久久午夜电影| 一区二区三区波多野结衣在线观看| 伊甸园精品99久久久久久| 久久精品国产亚洲高清剧情介绍| 99精品国产高清一区二区| 欧美日韩在线三区| 亚洲精品久久久一区二区三区| 亚洲无亚洲人成网站77777| 欧美a级一区二区| 国产日韩欧美| 亚洲国产精品久久久久秋霞影院| 国产精品videosex极品| 影音先锋亚洲视频| 在线亚洲观看| 亚洲伊人一本大道中文字幕| 羞羞视频在线观看欧美| 国产有码在线一区二区视频| 精品成人免费| 国产精品久久久久国产精品日日| 国产麻豆91精品| 永久免费视频成人| 另类国产ts人妖高潮视频| 久久精品国产91精品亚洲| 亚洲国产电影| 久久riav二区三区| 有坂深雪在线一区| 欧美福利在线观看| 欧美久久久久中文字幕| 欧美国产综合视频| 亚洲另类在线一区| 久久久99精品免费观看不卡| 久久精品国产免费看久久精品| 91久久精品一区二区三区| 亚洲精品一二三区| 夜夜嗨av色综合久久久综合网| 久久精品亚洲一区| 狠狠干狠狠久久| 久久精品亚洲精品| 中文无字幕一区二区三区| 欧美视频在线不卡| 狠狠色狠狠色综合系列| 国产精品久久久久久久久婷婷| 这里只有视频精品| 91久久在线| 美女网站在线免费欧美精品| 狠狠色狠狠色综合日日tαg| 国产免费一区二区三区香蕉精| 久久狠狠亚洲综合| 亚洲免费成人av电影| 可以免费看不卡的av网站| 欧美日韩妖精视频| 99精品欧美一区二区蜜桃免费| 久久国产色av| 免费看av成人| 一区二区三区在线免费视频| 欧美成人影音| 欧美日韩午夜激情| 伊人精品成人久久综合软件| 亚洲免费在线看| 国产日产欧美精品| 国产精品专区一| 欧美精品免费看| 欧美日韩成人综合在线一区二区| 麻豆精品国产91久久久久久| 久久福利毛片| 欧美伊人久久久久久久久影院| 欧美视频在线一区二区三区| 欧美在线视频免费播放| 亚洲国产日日夜夜| 在线精品国产欧美| 欧美人妖在线观看| 99精品欧美一区二区蜜桃免费| 亚洲视频在线观看免费| 亚洲国产精品久久久久久女王| 欧美日韩国产片| 在线 亚洲欧美在线综合一区| 欧美日韩国产精品| 亚洲乱码国产乱码精品精可以看| 亚洲一区二区三区四区视频| 国产伦精品一区二区三区视频黑人| 最新日韩欧美| 国产精品久久久久久久久免费| 在线免费观看一区二区三区| 快射av在线播放一区| 欧美调教视频| 欧美日韩视频在线一区二区观看视频| 欧美日韩成人|