日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做CS 259、Java/c++設計程序代寫
代做CS 259、Java/c++設計程序代寫

時間:2024-10-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Fall 2024 
CS 259 Lab 1 
Accelerating Convolutional Neural Network (CNN) on FPGAs using 
Merlin Compiler 
Due October 9 11:59pm 
Description 
Your task is to accelerate the computation of two layers in a convolutional neural network 
(CNN) using a high-level synthesis (HLS) tool on an FPGA. We encourage you to start with 
using the Merlin Compiler. For an input image with 228 × 228 pixels and 256 channels, you 
are going to calculate the tensor after going through a 2D convolution layer and a 2D max 
pooling layer. The convolution layer has 256 filters of shape 256 × 5 × 5, uses the ReLU 
activation relu(x) = max{x, 0} with a bias value for each output channel. The 2D maxpooling
 layer operates on 2 × 2 non-overlapping windows. You will need to implement this 
function using HLS: 
void CnnKernel(const float* input, const float* weight, const float* bias, float* 
output) 
where input is the input image of size [256][228][228], weight stores the weights of the 
convolution filters of size [256][256][5][5], bias stores the offset values of size [256] that 
will be added to the output channels, and output should be written to by you as defined 
above to store the result of maxpool(relu(conv2d(input, weight) + bias)). The output 
size is [256][112][112]. 
How-To 
FPGA accelerator compilation typically involves three (3) stages: high-level synthesis (HLS), 
bitstream generation, and onboard execution. The last two stages can take days to 
complete. Therefore, in this lab, we only focus on the first stage: HLS. Your performance will 
only be assessed using the estimation in the HLS reports, which is usually accurate. 
However, you are welcome to try out the last two steps if you are interested. 
 
 
 
Connecting to the Server: Method 1 
In this method, you won’t be able to run Merlin directly from your /home directory, so you’ll need 
to copy files back and forth. 
1. Connect to the server (VPN may be required). You can find VPN details here: 
https://www.it.ucla.edu/it-support-center/services/virtual-private-network-vpn-clients  
ssh <username>@brimstone.cs.ucla.edu 
 
2. Start the Docker container and share your home with –v: 
 
docker run -v /d0/class/:/home -it vitis2021 /bin/bash 
 
3. Source Vitis, navigate to the desired directory and clone the repository: 
 
source /tools/Xilinx/Vitis_HLS/2021.1/settings64.sh 
cd /opt 
git clone https://github.com/UCLA-VAST/cs-259-f24.git 
cd cs-259-f24/lab1 
 
4. Copy the necessary file to your home directory: 
 
cp /opt/cs-259-f24/lab1/cnn-krnl.cpp /home/<username> 
Connecting to the Server: Method 2 
In this method, you can run Merlin directly from your /home directory, but make sure to export your 
home directory. 
 
1. Connect to the server (VPN may be required). You can find VPN details here: 
https://www.it.ucla.edu/it-support-center/services/virtual-private-network-vpn-clients 
 
ssh <username>@brimstone.cs.ucla.edu 
 
2. Start the Docker container and share your home with –v: 
 
docker run --user $(id -u):100 -v /d0/class/:/home -it vitis2021 /bin/bash 
 
3. Export your home directory: 
 
export HOME=/home/<username> 
 
4. Source Vitis, navigate to your home directory and clone the repository: 
 
source /tools/Xilinx/Vitis_HLS/2021.1/settings64.sh 
cd /home/<username> 
git clone https://github.com/UCLA-VAST/cs-259-f24.git 
cd cs-259-f24/lab1 
Build and Run Baseline with Software Simulation 
We have prepared the starter kit for you. Please run: make 
This command will perform a software simulation of the provided starter FPGA HLS kernel. It 
should show “PASS”. You need to use FPGA Developer AMI in this lab unless you are using 
a computer with Xilinx Vitis HLS installation. However, you are still suggested to develop code 
and run software simulation locally to test the correctness. You can move to AWS once you 
enter the tuning stage. 
Understand the automatic Merlin’s optimization 
Before modifying the kernel and adding pragmas, synthesize the CNN kernel with Merlin and 
describe in your report the automatic optimizations made by Merlin and how this reduces 
latency. 
Modify the HLS CNN Kernel 
If you have successfully built and run the baseline HLS CNN kernel, you can now optimize 
the code to design your CNN kernel. Your task is to implement a fast, parallel version of the 
CNN kernel on FPGA. You should start with the provided starter kit. You should edit cnnkrnl.cpp
for this task. When editing, please use the given types input_t, weight_t, bias_t, 
and output_t for the corresponding data, and compute_t for your intermediate values. 
You can use them as if they are float numbers. 
Parallelism should be exploited by using Merlin pragmas and tiling. You are encouraged to 
focus on Merlin pragmas (#pragma ACCEL parallel, #pragma ACCEL pipeline and #pragma 
ACCEL tile). You can explicitly modify the code (tiling, loop permutation, …) but make sure 
the code modified is correct. 
In the starter kit, we simply wrap a sequential CNN code with #pragma ACCEL kernel, and 
Merlin automatically performs data caching, memory coalescing, pipelining and 
parallelization, which yield about 10 GFLOPs. 
Although the skeleton kernel is provided, you are also free to create your own by removing 
the header file inclusion of “lib/cnn-krnl.h” and implement the basic kernel from scratch. 
However, this would require specific expertise in Xilinx FPGA architecture and is not 
recommended for this course. 
Test Your HLS CNN Kernel with Software Simulation 
To perform software emulation of your FPGA implementation of CNN kernel: 
make 
If you see something similar to the following message, your implementation is incorrect. 
Found 21201** errors 
FAIL Since the software simulation step uses the CPU to emulate the hardware behavior, it only 
serves as correctness test and its execution time doesn’t reflect that of actual hardware. Your 
estimated execution time should be retrieved using the command below: 
make estimate 
This command will print out the estimated latency and resource usage of your kernel: 
+---------------------------+------------------------+----------+----------+---------+--------+-------+------+ 
| Kernel | Cycles | LUT | FF | BRAM | DSP | URAM |Detail| 
+---------------------------+------------------------+----------+----------+---------+--------+-------+------+ 
|CnnKernel (cnn-krnl.cpp:12)|4179564052 (16718.256ms)|49558 (4%)|49381 (2%)|810 (18%)|202 (2%)|25 (2%)|- | 
+---------------------------+------------------------+----------+----------+---------+--------+-------+------+ 
The time highlighted in yellow is the estimated execution time of your FPGA kernel. You can 
get the performance by “kNum*kNum*kImSize*kImSize*kKernel*kKernel*2/latency”, or 
164.4/latency (in s) to get the performance in GFLOPS. 
IMPORTANT: Please make sure that all your loops have fixed loop bounds. If any of the loop 
bounds are variable, a performance estimation will not be shown and you will receive no 
performance grade. 
IMPORTANT: The “make estimate” command should finish in 30 minutes, or in two hours 
with highly-complex optimizations. Our recommendation is to halt your estimation using 
Ctrl-C when the time exceeds 30 minutes, except for your last step (after you reach ~100 
GOPS). More than 12 hours in the estimation will result in zero for the performance score. 
As your kernel design becomes more complex, the software simulation and the estimation 
will start to take a significantly longer time. 
IMPORTANT: As you apply more optimizations, your resource usage will also increase. 
Ideally, you should keep applying optimization until your kernel occupies about 80% of these 
resources. The remaining 20% should be reserved for the interfaces (DRAM/PCI-e controller) 
and the downstream flows. Please make sure that resource utilization is less than 80% for all 
FPGA resources. If any of the resources are over this limit, you will receive no performance 
grade. 
IMPORTANT: You can check the HLS report by opening merlin.rpt with a text editor. This 
file will be generated with the command make estimate. You must submit this file with your 
final submission. You should not modify this file in your submission, and it will be all verified 
after submission due. Any modification to this file in your submission constitutes academic 
misconduct and will be reported. 
Advanced Tips for HLS 
Kernel Profiling: If you want to “profile” your kernel, you can open merlin.rpt with a text 
editor and scroll down to Performance Estimate. You can see the trip count, accumulated 
cycles and cycles per call, as well as pipeline initiation interval and parallel factor for each 
loop in the table. For resource usage, you can go to Resource Estimate. No loop level 
information is available, though. If you want to check the resource usage of a code region, 
you can wrap it with a function then run again. 
Kernel after transformation: If you want to see the kernel after being transformed by Merlin, 
you can look for that in .merlin_prj/run/implement/exec/hls/kernel. Annotation for Profiling: If you find the loops in your report hard to read, you can name the 
loops you are interested in using a goto label. For example, this_loop: for (int i = 0; 
i < n; i++); 
Debugging Pipelining: If you are not sure about why you cannot achieve a specific initiation 
interval as you expected, you can open the file below and read the logs. HLS usually gives out 
a reason. 
.merlin_prj/run/implement/exec/hls/_x/logs/CnnKernel/CnnKernel/vitis_hls.log 
Long Synthesis Time In Pipelining: You will experience long HLS synthesis time (for 
generating the estimation) if you pipeline a loop with a large loop body. Besides, please note 
that as all loops inside a pipeline will be unrolled, it may be automatically a large loop body. 
In this case, you may want to exchange the order of pipelining and unrolling and see if the time 
can get improved. 
Use Functions for Shorter Synthesis Time: If you experience long synthesis time, you may try 
wrapping some loops into a function and specify #pragma HLS inline off inside the 
function body. However, this may lead to inaccurate dependency analysis or memory port 
analysis and cause lower performance sometimes. There might be some workarounds, or 
not. For example, if you have access to A[k + i][j] inside the function, passing A + k to 
the function and accessing A’[i][j] can allow HLS to understand the array partitioning 
better than passing A. You need to do experiments. 
General Tips 
● When you develop on AWS, to resume a session in case you lose your connection, you 
can run screen after login. You can recover your session with screen -DRR. You should 
stop your AWS instance if you are going to come back and resume your work in a few 
hours or days. Your data will be preserved but you will be charged for the EBS storage 
for $0.10 per GB per month (with default settings). You should terminate your instance 
if you are not going to come back and resume your work. Data on the instance will be 
lost. 
● You are recommended to use private repositories provided by GitHub to backup your 
code. Never put your code in a public repo to avoid potential plagiarism. To check in 
your code to a private GitHub repo, create a repo first. 
git branch -m upstream 
git checkout -b main # skip these two lines if you are reusing the folder in Lab 1 
... // your modifications 
git add cnn-krnl.cpp merlin.rpt 
git commit -m "lab1: first version" # change commit message accordingly 
# please replace the URL with your own URL 
git remote add origin git@github.com:YourGitHubUserName/your-repo-name.git 
git push -u origin main 
● You are recommended to git add and git commit often so that you can keep track of 
the history and revert whenever necessary. 
● Make sure your code produces correct results! 
(Optional) Modify the HLS CNN Kernel using Vitis Pragmas 
You are encouraged to use mainly Merlin pragmas. If needed, you can use Vitis pragmas for 
finer-grained control and optimization. The list of pragmas in Vitis can be found here. You can simply write Vitis pragmas and Merlin pragmas in the same file (cnn-krnl.cpp), but note 
that, to apply an HLS pragma to a loop, you need to put the pragma inside the loop body 
instead of before it. 
Submission 
You need to report the estimated performance results of your FPGA-based implementation on 
a Xilinx Ultrascale+ VU9P FPGA (the FPGA we are using, specified in the makefile). Please 
express your performance in GFLOPS and the speedup compared with the starter-kit version. 
Your report should also include: 
● Please run the input C file through the Merlin Compiler, identify the code 
transformation and HLS pragmas that Merlin added, and discuss why. 
● Please explain the parallelization and optimization strategies you have applied for 
each loop in the CNN program (convolution, max pooling, etc) in this lab. Include the 
pragmas (if any) or code segments you have added to achieve your strategy. 
● Please incrementally evaluate each parallelization/optimization that you have applied 
and explain why it improves the performance. 
● Please report the FPGA resources (LUT/FF/DSP/BRAM) usages, in terms of resource 
count and percentage of the total. Which resource has been used most, in terms of 
percentage? 
● Optional: The challenges you faced, and how you overcame them. 
● (Bonus +5pts): Analyze your code and check if the DSP/BRAM resource usage 
matches your expectation. Only the adders, multipliers, and size of arrays need to be 
considered. Please attach related code segments to your report and show how you 
computed the expected number. Provide a discussion on possible reasons if they 
differ significantly. 
You also need to submit your optimized kernel code. Do not modify code in the lib directory. 
Please submit on Gradescope. Your final submission should contain and only contain these 
files individually: 
 ├ cnn-krnl.cpp 
 ├ merlin.rpt 
 └ lab**report.pdf 
File lab**report.pdf must be in PDF format. 
Grading Policy 
Your submission will only be graded if it complies with the formatting requirements. 
Missing reports/code or compilation errors will result in 0 for the corresponding 
category(ies). 
Correctness (40%) 
Please check the correctness using the command “make”. Performance (40%) 
Your performance will be evaluated based on the estimation report generated using the 
command “make estimate”. The performance point will be added only if you have the 
correct result, so please prioritize the correctness over performance. Your performance will 
be evaluated based on the ranges of throughput (GOPS). Ranges A+ and A++ will be defined 
after all the submissions are graded: 
● Range A++, better than Range A+ performance: 40 points + 20 points (bonus) 
● Range A+, better than Range A performance: 40 points + 10 points (bonus) 
● Range A GFLOPS [200, 280]: 40 points 
● Range B GFLOPS [120, 200): 30 points 
● Range C GFLOPS [60, 120): 20 points 
● Range D GFLOPS [30, 60): 10 points 
● Lower than range F [0, 30): 0 points 
 
Report (20%) 
Points may be deducted if your report misses any of the sections described above. 
Academic Integrity 
All work is to be done individually, and any sources of help are to be explicitly cited. You must 
not modify the HLS report merlin.rpt in your submission. Any instance of academic 
dishonesty will be promptly reported to the Office of the Dean of Students. Academic 
dishonesty includes, but is not limited to, cheating, fabrication, plagiarism, copying code from 
other students or from the internet, modifying the software-generated report, or facilitating 
academic misconduct. We’ll use automated software to identify similar sections between 
different student programming assignments, against previous students’ code, or against 
Internet sources. We’ll run HLS on all submissions and compare the reproduced HLS 
report with the submitted report. Students are not allowed to post the lab solutions on public 
websites (including GitHub). Please note that any version of your submission must be your 
own work and will be compared with sources for plagiarism detection. 
Late policy: Late submission will be accepted for 24 hours with a 10% penalty. No late 
submission will be accepted after that (you lost all points after the late submission time). 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp









 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECE4016、Python設計編程代做
  • 下一篇:DDA3020代做、代寫Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        久久久国产精品一区二区中文| 欧美在线一级视频| 国产精品视频自拍| 日韩视频免费在线观看| 亚洲国产综合91精品麻豆| 最新国产成人在线观看| 国产久一道中文一区| 狠狠色伊人亚洲综合网站色| 国产精品h在线观看| 欧美日韩亚洲一区二区三区四区| 激情欧美一区二区三区| 欧美日本不卡视频| 国产亚洲一级高清| 亚洲精品美女久久久久| 久久艳片www.17c.com| 亚洲风情在线资源站| 欧美色综合天天久久综合精品| 久久久久国产精品一区三寸| 国产精品久久久久久妇女6080| 欧美理论电影在线观看| 午夜一区二区三区在线观看| 国产精品成人免费视频| 欧美日韩国产一级片| 欧美日韩综合视频网址| 久久久999| 午夜精品久久久久久久久久久久久| 亚洲国产精品免费| 亚洲欧美综合精品久久成人| 欧美激情一区二区三区高清视频| 欧美性色综合| 亚洲人成亚洲人成在线观看图片| 亚洲欧美日韩在线| 欧美一区二区播放| 亚洲欧美一区二区在线观看| 国产精品一区在线观看你懂的| 欧美一区视频| 欧美一区二区| 亚洲男人第一av网站| 国产乱码精品一区二区三区av| 亚洲线精品一区二区三区八戒| 蜜臀av一级做a爰片久久| 亚洲欧美中文另类| 欧美一区在线看| 狠狠色2019综合网| 亚洲精品国产精品国自产观看浪潮| 国产欧美精品一区二区色综合| 久久精品日产第一区二区| 亚洲男女自偷自拍| 欧美日韩1区2区3区| 亚洲经典视频在线观看| 日韩视频一区二区三区在线播放| 亚洲午夜国产成人av电影男同| 亚洲国产高清一区| 久久亚洲影音av资源网| 亚洲国产另类 国产精品国产免费| 欧美精品一区二区高清在线观看| 久久久精品免费视频| 女女同性女同一区二区三区91| 国产精品a久久久久久| 欧美激情精品久久久久久黑人| 欧美日韩在线一区| 欧美激情一区二区三区蜜桃视频| 国产精品自在线| 国产日韩欧美在线| 精品不卡一区| 一本色道久久综合亚洲精品婷婷| 在线播放中文字幕一区| 亚洲午夜精品一区二区三区他趣| 亚洲视屏一区| 欧美另类综合| 欧美黄在线观看| 国产精品午夜在线| 欧美一区二区三区在线| 一本色道久久综合亚洲精品婷婷| 亚洲精品久久在线| 国产精品www994| 免费在线观看日韩欧美| 国产精品免费观看在线| 欧美激情视频一区二区三区免费| 亚洲免费大片| 亚洲特色特黄| 国产午夜精品久久久久久免费视| 欧美一级久久久久久久大片| 亚洲欧美日韩综合aⅴ视频| 欧美高清视频在线| 99国内精品久久| 久久精品国产免费看久久精品| 午夜欧美电影在线观看| 欧美激情一区在线观看| 欧美午夜三级| 欧美激情视频一区二区三区在线播放| 久久久噜噜噜久久| 亚洲综合精品一区二区| 国产亚洲欧洲997久久综合| 欧美+亚洲+精品+三区| 国产精品sm| 女人色偷偷aa久久天堂| 在线视频欧美日韩| 亚洲国产精品成人久久综合一区| 亚洲韩国精品一区| 国产亚洲精品久久久| 欧美精品成人| 亚洲私人影院| 欧美午夜不卡影院在线观看完整版免费| 欧美性大战xxxxx久久久| 在线观看国产欧美| 久久精品一级爱片| 一本色道久久综合精品竹菊| 国产日韩av在线播放| 在线精品观看| 永久免费毛片在线播放不卡| 亚洲图片欧美日产| 国产精品对白刺激久久久| 久久亚洲精品欧美| 亚洲欧美在线观看| 欧美高清视频一区二区| 国产一区二区黄色| 欧美在线3区| 欧美主播一区二区三区| 亚洲在线日韩| 亚洲午夜黄色| 国产在线观看精品一区二区三区| 亚洲国产精品一区二区www在线| 欧美一级理论片| 欧美一级二级三级蜜桃| 中文一区在线| 在线精品高清中文字幕| 亚洲欧美欧美一区二区三区| 国产精品视频九色porn| 久久久综合香蕉尹人综合网| 老牛影视一区二区三区| 久久一区二区三区av| 欧美激情二区三区| 国产午夜精品视频免费不卡69堂| 亚洲免费视频一区二区| 亚洲视频在线视频| 亚洲精品中文字幕在线观看| 亚洲色图自拍| 亚洲精品国产精品乱码不99| 免费在线日韩av| 亚洲午夜性刺激影院| 亚洲精品无人区| 免费成人黄色| 欧美在线视频全部完| 欧美性大战久久久久| 午夜精品一区二区三区在线| 国产午夜精品麻豆| 玖玖综合伊人| 欧美一级片一区| 欧美性事在线| 正在播放欧美视频| 国产一区二区三区在线观看免费| 国产精品免费一区二区三区观看| 久久亚洲免费| 国产精品女主播| 欧美极品欧美精品欧美视频| 国产精品最新自拍| 国产精品综合不卡av| 亚洲一区欧美| 国产精品麻豆成人av电影艾秋| 亚洲自拍偷拍网址| 欧美激情精品久久久六区热门| 久久国产福利| 国产亚洲成人一区|