日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫INFS3208、代做Python語言編程
代寫INFS3208、代做Python語言編程

時間:2024-10-11  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



School of Information Technology and Electrical Engineering 
INFS**08 – Cloud Computing 
Programming Assignment Task III (10 Marks) 
Task description: 
In this assignment, you are asked to write a piece of Spark code to count occurrences of verbs in the 
UN debates and find the most similar debate contents. The returned result should be the top 10 
verbs that are most frequently used in all debates and the debate that is most similar to the one 
we provide. This assignment is to test your ability to use transformation and action operations in Spark 
RDD programming and your understanding of Vector Database. You will be given three files, 
including a UN General Debates dataset (un-general-debates.csv), a verb list (all_verbs.txt) 
and a verb dictionary file (verb_dict.txt). These source files are expected to be stored in a HDFS. 
You can choose either Scala or Python to complete this assignment in the Jupyter Notebook. There are 
some technical requirements in your code submission as follows: 
 
Objectives: 
1. Read Source Files from HDFS and Create RDDs (1.5 marks): 
• Read the UN General Debates dataset (un-general-debates.csv) from HDFS and 
convert only the “text” column into an RDD. Details of un-general-debates.csv are 
provided in the Preparation section below (1 mark). 
• Read the verb list file (all_verbs.txt) and verb dictionary file (verb_dict.txt) from 
HDFS and load them into separate RDDs (0.5 marks). 
• Note: If you failed to read files from HDFS, you can still read them from the local file 
system in work/nbs/ and complete the following tasks. 
2. Use Learned RDD Operations to Preprocess the Debate Texts (3 marks): 
• Remove empty lines (0.5 marks). 
• Remove punctuations that could attach to the verbs (0.5 marks). 
o E.g., “work,” and “work” will be counted differently, if you DO NOT remove the 
punctuation. 
• Change the capitalization or case of text (0.5 marks). 
o E.g., “WORK”, “Work” and “work” will be counted as three different verbs, if you 
DO NOT make all of them in lower-case. 
• Find all verbs in the RDD by matching the words in the given verb list (all_verbs.txt) 
(0.5 mark). 
• Convert all verbs in different tenses into the simple present tense by looking up the 
verbs in the verb dictionary list (verb_dict.txt) (1 mark). 
o E.g., regular verb: “work” - works”, “worked”, and “working”. 
o E.g., irregular verb: “begin” - “begins”, “began”, and “begun”. o E.g., linking verb “be” and its various forms, including “is”, “am”, “are”, “was”, 
“were”, “being” and “been”. 
o E.g., (work, 100), (works,50), (working,150) should be counted as (work, 300). 
3. Use learned RDD Operations to Count Verb Frequency (3 marks): 
• Count the top 10 frequently used verbs in UN debates (2 marks). 
• Display the results in the format (“verb1”, count1), (“verb2”, count2), … and in a 
descending order of the counts (1 marks). 
4. Use Vector Database (Faiss) to Find the Most Similar Debate (2.5 marks): 
• Convert the original debates into vectors and store them in a proper Index (1.5 mark). 
• Search the debate content that has the most similar idea to “Global climate change is 
both a serious threat to our planet and survival.” (1 mark) 
 
 
Preparation: 
In this individual coding assignment, you will apply your knowledge of Vector Database, Spark, Spark 
RDD Programming and HDFS (in Lectures 7-10). Firstly, you should read Task Description to 
understand what the task is and what the technical requirements include. Secondly, you should review 
the creation and usage of Faiss, transformations and actions in Spark, and usage of HDFS in Lectures 
and Practicals 7-10. In the Appendix, there are some transformation and action operations you could 
use in this assignment. Lastly, you need to write the code (Scala or Python) in the Jupyter Notebook. 
All technical requirements need to be fully met to achieve full marks. You can either practise on 
the GCP’s VM or your local machine with Oracle Virtualbox if you are unable to access GCP. Please 
read the Example of writing Spark code below to have more details. 
 
 
Assignment Submission: 
 You need to compress only the Jupyter Notebook (.ipynb) file. 
 The name of the compressed file should be named “FirstName_LastName_StudentNo.zip”. 
 You must make an online submission to Blackboard before 3:00 PM on Friday, 11/10/2024 
 Only one extension application could be approved due to medical conditions. 
 
 
Main Steps: 
Step 1: 
Log in your VM instance and change to your home directory. We recommend using a VM instance 
with at least 4 vCPUs, 8G memory and 20GB free disk space. 
 
Step 2: 
git clone https://github.com/csenw/cca3.git && cd cca3 
Run these commands to download the required docker-compose.yml file and configuration files. Step 3: 
sudo chmod -R 777 nbs/ 
docker-compose up -d 
Run all the containers using docker-compose 
 
 
 
Step 4: 
Open the Jupyter Notebook (http://external_IP:8888) and you can find all the files under the 
work/nbs/ folder. This is also the folder where you should write the notebook (.ipynb) file. 
 
 Step 5: 
docker ps 
docker exec <container_id> hdfs dfs -put /home/nbs/all_verbs.txt /all_verbs.txt 
docker exec <container_id> hdfs dfs -put /home/nbs/verb_dict.txt /verb_dict.txt 
docker exec <container_id> hdfs dfs -put /home/nbs/un-general-debates.csv /ungeneral-debates.csv

Run the above commands to put the three source files into HDFS. Substitute <container_id> with 
your namenode container ID. After that, you should see the three files from HDFS web interface at 
http://external_IP/explorer.html 
 
 
Step 6: 
The un-general-debates.csv is a dataset that includes the text of each country’s statement from 
the general debate, separated by “country”, “session”, “year” and “text”. This dataset includes over 
forty years of data from different countries, which allows for the exploration of differences between 
countries and over time [1,2]. It is organized in the following format: 
 
In this assignment, we only consider the “text” column. 
The verb_dict.txt file contains different tenses of each verb, separated by commas. The first word 
is the simple present tense of the verb. 
 The all_verbs.txt file contains all the verbs. 
 
 
Step 7: 
Create a Jupyter Notebook to complete the programming objectives. 
We provide some intermediate output samples below. Please note that these outputs are NOT answers 
and may vary from your outputs due to different implementations and different Spark behaviours. 
• Intermediate output sample 1, take only verbs: 
 
 
• Intermediate output sample 2, top 10 verb counts (without converting verb tenses): 
 
 • Intermediate output sample 3, most similar debate: 
 
You are free to use your own implementation. However, your result should reasonably reflect the top 
10 verbs that are most frequently used in UN debates, and the most similar debate contents to the 
sentence “Global climate change is both a serious threat to our planet and survival.” 
 
 
Reference: 
[1] UN General Debates, https://www.kaggle.com/datasets/unitednations/un-general-debates. 
[2] Alexander Baturo, Niheer Dasandi, and Slava Mikhaylov, "Understanding State Preferences With 
Text As Data: Introducing the UN General Debate Corpus". Research & Politics, 2017. 
 
 Appendix: 
Transformations: 
Transformation Meaning 
map(func) Return a new distributed dataset formed by passing each element of the 
source through a function func. 
filter(func) Return a new dataset formed by selecting those elements of the source on 
which funcreturns true. 
flatMap(func) Similar to map, but each input item can be mapped to 0 or more output 
items (so funcshould return a Seq rather than a single item). 
union(otherDataset) Return a new dataset that contains the union of the elements in the source 
dataset and the argument. 
intersection(otherDataset) Return a new RDD that contains the intersection of elements in the source 
dataset and the argument. 
distinct([numPartitions])) Return a new dataset that contains the distinct elements of the source 
dataset. 
groupByKey([numPartitions]) When called on a dataset of (K, V) pairs, returns a dataset of (K, 
Iterable<V>) pairs. 
Note: If you are grouping in order to perform an aggregation (such as a 
sum or average) over each key, using reduceByKey or aggregateByKey will 
yield much better performance. 
Note: By default, the level of parallelism in the output depends on the 
number of partitions of the parent RDD. You can pass an 
optional numPartitions argument to set a different number of tasks. 
reduceByKey(func, 
[numPartitions]) 
When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs 
where the values for each key are aggregated using the given reduce 
function func, which must be of type (V,V) => V. Like in groupByKey, the 
number of reduce tasks is configurable through an optional second 
argument. 
sortByKey([ascending], 
[numPartitions]) 
When called on a dataset of (K, V) pairs where K implements Ordered, 
returns a dataset of (K, V) pairs sorted by keys in ascending or descending 
order, as specified in the boolean ascending argument. 
join(otherDataset, 
[numPartitions]) 
When called on datasets of type (K, V) and (K, W), returns a dataset of (K, 
(V, W)) pairs with all pairs of elements for each key. Outer joins are 
supported through leftOuterJoin, rightOuterJoin, and fullOuterJoin. 
 
 Actions: 
Action Meaning 
reduce(func) Aggregate the elements of the dataset using a function func (which takes 
two arguments and returns one). The function should be commutative 
and associative so that it can be computed correctly in parallel. 
collect() Return all the elements of the dataset as an array at the driver program. 
This is usually useful after a filter or other operation that returns a 
sufficiently small subset of the data. 
count() Return the number of elements in the dataset. 
first() Return the first element of the dataset (similar to take(1)). 
take(n) Return an array with the first n elements of the dataset. 
countByKey() Only available on RDDs of type (K, V). Returns a hashmap of (K, Int) pairs 
with the count of each key. 
foreach(func) Run a function func on each element of the dataset. This is usually done 
for side effects such as updating an Accumulator or interacting with 
external storage systems. 
Note: modifying variables other than Accumulators outside of 
the foreach() may result in undefined behavior. See Understanding 
closures for more details. 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫comp2022、代做c/c++,Python程序設計
  • 下一篇:代做320SC編程、代寫Python設計程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲麻豆视频| 亚洲大胆女人| 久久久激情视频| 欧美国产精品日韩| 欧美日本视频在线| 国产精品激情偷乱一区二区∴| 亚洲看片一区| 欧美激情精品久久久久久大尺度| 久久国产精品99精品国产| 亚洲视频在线观看网站| 亚洲国产日韩在线一区模特| 欧美三日本三级少妇三2023| 久久久精品免费视频| 久久久国产成人精品| 1000部国产精品成人观看| 久久久久成人精品免费播放动漫| 久久一区视频| 亚洲午夜小视频| 欧美激情影院| 欧美午夜美女看片| 国产视频精品va久久久久久| 国内免费精品永久在线视频| 欧美精品在线免费播放| 国内精品视频久久| 国产精品久久久久久久久久妞妞| 欧美日韩一级大片网址| 最近看过的日韩成人| 久久国内精品自在自线400部| 国产一级久久| 欧美日韩国产va另类| 精东粉嫩av免费一区二区三区| 激情91久久| 乱码第一页成人| 亚洲少妇中出一区| 欧美黄色免费网站| 99re6这里只有精品视频在线观看| 久久夜色精品国产欧美乱极品| 日韩午夜免费| 午夜精品在线| 亚洲小说区图片区| 亚洲在线观看视频网站| 国产精品久久久一区二区三区| 黑人极品videos精品欧美裸| 91久久中文字幕| 国产日韩精品久久久| 一本久道久久综合婷婷鲸鱼| 日韩视频二区| 最新国产乱人伦偷精品免费网站| 亚洲高清久久久| 最新亚洲一区| 国产日韩精品在线观看| 欧美成在线观看| 国产日韩欧美综合精品| 久久视频国产精品免费视频在线| 亚洲三级免费| 欧美伦理影院| 亚洲欧美电影院| 欧美日韩中文在线| 国产一区二区| 先锋a资源在线看亚洲| 亚洲一区二区高清| 国产精品电影在线观看| 欧美三级日韩三级国产三级| 欧美日韩国产小视频| 欧美黑人在线观看| 狠狠色狠狠色综合人人| 在线观看不卡| 玖玖视频精品| 久久久成人网| 亚洲天堂成人在线视频| 国产精品a级| 国产日韩欧美在线播放不卡| 国产日韩欧美综合一区| 国产亚洲精品一区二区| 亚洲国产综合视频在线观看| 亚洲欧洲精品一区二区| 国产精品美腿一区在线看| 麻豆亚洲精品| 欧美日韩免费视频| 美女国产精品| 亚洲欧美成aⅴ人在线观看| 亚洲久久在线| 伊人久久噜噜噜躁狠狠躁| 欧美日韩一区自拍| 久久日韩粉嫩一区二区三区| 亚洲乱码国产乱码精品精| 欧美一区二区网站| 国产日韩av在线播放| 日韩网站在线看片你懂的| 黄色国产精品一区二区三区| 久久精品免视看| 欧美一区二区三区视频在线| 久久国产精品第一页| 欧美久久影院| 国产精品永久免费在线| 国产欧美一区二区视频| 久久成年人视频| 欧美激情精品久久久六区热门| 亚洲高清视频的网址| 亚洲专区在线视频| 在线免费观看成人网| 91久久国产精品91久久性色| 欧美国产日韩在线观看| 亚洲在线视频一区| 久久艳片www.17c.com| 精品动漫一区二区| 久久视频国产精品免费视频在线| 欧美视频四区| 久久久青草青青国产亚洲免观| 国产精品嫩草影院av蜜臀| 亚洲精品一区在线| 欧美老女人xx| 一区二区三区自拍| 亚洲精品视频中文字幕| 国产主播喷水一区二区| 欧美专区18| 欧美亚洲一区二区在线| 欧美精品少妇一区二区三区| 久久精品一区二区三区中文字幕| 一区二区三区精品视频| 欧美日韩视频不卡| 久久午夜电影| 欧美一区二区精品久久911| 欧美激情一区二区三区在线视频观看| 国产亚洲欧美另类一区二区三区| 国产亚洲在线| 国产精品素人视频| 亚洲永久免费观看| 裸体丰满少妇做受久久99精品| 国产精品久久久久久久久果冻传媒| 亚洲一区在线免费观看| 欧美日韩裸体免费视频| 最新中文字幕亚洲| 亚洲主播在线播放| 一区二区激情小说| 狠狠色丁香婷婷综合影院| 国产久一道中文一区| 亚洲美女免费精品视频在线观看| 亚洲美女在线国产| 欧美视频一区二区| 国产精品免费网站| 麻豆精品国产91久久久久久| 国产精品美女主播在线观看纯欲| 亚洲欧美一区二区三区久久| 亚洲欧美另类综合偷拍| 欧美日韩国产麻豆| 亚洲免费影视第一页| 国产亚洲精品福利| 久久se精品一区精品二区| 久久国产精品久久久久久电车| 欧美一区二区网站| 欧美1区2区3区| 日韩视频一区二区在线观看| 欧美大胆a视频| 在线亚洲国产精品网站| 老司机午夜精品视频在线观看| 久久精品国产欧美亚洲人人爽| 国产精品免费一区豆花| 欧美日韩不卡一区| 亚洲性av在线| 韩日精品中文字幕| 亚洲一二三四久久| 欧美日韩一区三区四区| 欧美成人午夜视频|