日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫INFS3208、代做Python語言編程
代寫INFS3208、代做Python語言編程

時間:2024-10-11  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



School of Information Technology and Electrical Engineering 
INFS**08 – Cloud Computing 
Programming Assignment Task III (10 Marks) 
Task description: 
In this assignment, you are asked to write a piece of Spark code to count occurrences of verbs in the 
UN debates and find the most similar debate contents. The returned result should be the top 10 
verbs that are most frequently used in all debates and the debate that is most similar to the one 
we provide. This assignment is to test your ability to use transformation and action operations in Spark 
RDD programming and your understanding of Vector Database. You will be given three files, 
including a UN General Debates dataset (un-general-debates.csv), a verb list (all_verbs.txt) 
and a verb dictionary file (verb_dict.txt). These source files are expected to be stored in a HDFS. 
You can choose either Scala or Python to complete this assignment in the Jupyter Notebook. There are 
some technical requirements in your code submission as follows: 
 
Objectives: 
1. Read Source Files from HDFS and Create RDDs (1.5 marks): 
• Read the UN General Debates dataset (un-general-debates.csv) from HDFS and 
convert only the “text” column into an RDD. Details of un-general-debates.csv are 
provided in the Preparation section below (1 mark). 
• Read the verb list file (all_verbs.txt) and verb dictionary file (verb_dict.txt) from 
HDFS and load them into separate RDDs (0.5 marks). 
• Note: If you failed to read files from HDFS, you can still read them from the local file 
system in work/nbs/ and complete the following tasks. 
2. Use Learned RDD Operations to Preprocess the Debate Texts (3 marks): 
• Remove empty lines (0.5 marks). 
• Remove punctuations that could attach to the verbs (0.5 marks). 
o E.g., “work,” and “work” will be counted differently, if you DO NOT remove the 
punctuation. 
• Change the capitalization or case of text (0.5 marks). 
o E.g., “WORK”, “Work” and “work” will be counted as three different verbs, if you 
DO NOT make all of them in lower-case. 
• Find all verbs in the RDD by matching the words in the given verb list (all_verbs.txt) 
(0.5 mark). 
• Convert all verbs in different tenses into the simple present tense by looking up the 
verbs in the verb dictionary list (verb_dict.txt) (1 mark). 
o E.g., regular verb: “work” - works”, “worked”, and “working”. 
o E.g., irregular verb: “begin” - “begins”, “began”, and “begun”. o E.g., linking verb “be” and its various forms, including “is”, “am”, “are”, “was”, 
“were”, “being” and “been”. 
o E.g., (work, 100), (works,50), (working,150) should be counted as (work, 300). 
3. Use learned RDD Operations to Count Verb Frequency (3 marks): 
• Count the top 10 frequently used verbs in UN debates (2 marks). 
• Display the results in the format (“verb1”, count1), (“verb2”, count2), … and in a 
descending order of the counts (1 marks). 
4. Use Vector Database (Faiss) to Find the Most Similar Debate (2.5 marks): 
• Convert the original debates into vectors and store them in a proper Index (1.5 mark). 
• Search the debate content that has the most similar idea to “Global climate change is 
both a serious threat to our planet and survival.” (1 mark) 
 
 
Preparation: 
In this individual coding assignment, you will apply your knowledge of Vector Database, Spark, Spark 
RDD Programming and HDFS (in Lectures 7-10). Firstly, you should read Task Description to 
understand what the task is and what the technical requirements include. Secondly, you should review 
the creation and usage of Faiss, transformations and actions in Spark, and usage of HDFS in Lectures 
and Practicals 7-10. In the Appendix, there are some transformation and action operations you could 
use in this assignment. Lastly, you need to write the code (Scala or Python) in the Jupyter Notebook. 
All technical requirements need to be fully met to achieve full marks. You can either practise on 
the GCP’s VM or your local machine with Oracle Virtualbox if you are unable to access GCP. Please 
read the Example of writing Spark code below to have more details. 
 
 
Assignment Submission: 
 You need to compress only the Jupyter Notebook (.ipynb) file. 
 The name of the compressed file should be named “FirstName_LastName_StudentNo.zip”. 
 You must make an online submission to Blackboard before 3:00 PM on Friday, 11/10/2024 
 Only one extension application could be approved due to medical conditions. 
 
 
Main Steps: 
Step 1: 
Log in your VM instance and change to your home directory. We recommend using a VM instance 
with at least 4 vCPUs, 8G memory and 20GB free disk space. 
 
Step 2: 
git clone https://github.com/csenw/cca3.git && cd cca3 
Run these commands to download the required docker-compose.yml file and configuration files. Step 3: 
sudo chmod -R 777 nbs/ 
docker-compose up -d 
Run all the containers using docker-compose 
 
 
 
Step 4: 
Open the Jupyter Notebook (http://external_IP:8888) and you can find all the files under the 
work/nbs/ folder. This is also the folder where you should write the notebook (.ipynb) file. 
 
 Step 5: 
docker ps 
docker exec <container_id> hdfs dfs -put /home/nbs/all_verbs.txt /all_verbs.txt 
docker exec <container_id> hdfs dfs -put /home/nbs/verb_dict.txt /verb_dict.txt 
docker exec <container_id> hdfs dfs -put /home/nbs/un-general-debates.csv /ungeneral-debates.csv

Run the above commands to put the three source files into HDFS. Substitute <container_id> with 
your namenode container ID. After that, you should see the three files from HDFS web interface at 
http://external_IP/explorer.html 
 
 
Step 6: 
The un-general-debates.csv is a dataset that includes the text of each country’s statement from 
the general debate, separated by “country”, “session”, “year” and “text”. This dataset includes over 
forty years of data from different countries, which allows for the exploration of differences between 
countries and over time [1,2]. It is organized in the following format: 
 
In this assignment, we only consider the “text” column. 
The verb_dict.txt file contains different tenses of each verb, separated by commas. The first word 
is the simple present tense of the verb. 
 The all_verbs.txt file contains all the verbs. 
 
 
Step 7: 
Create a Jupyter Notebook to complete the programming objectives. 
We provide some intermediate output samples below. Please note that these outputs are NOT answers 
and may vary from your outputs due to different implementations and different Spark behaviours. 
• Intermediate output sample 1, take only verbs: 
 
 
• Intermediate output sample 2, top 10 verb counts (without converting verb tenses): 
 
 • Intermediate output sample 3, most similar debate: 
 
You are free to use your own implementation. However, your result should reasonably reflect the top 
10 verbs that are most frequently used in UN debates, and the most similar debate contents to the 
sentence “Global climate change is both a serious threat to our planet and survival.” 
 
 
Reference: 
[1] UN General Debates, https://www.kaggle.com/datasets/unitednations/un-general-debates. 
[2] Alexander Baturo, Niheer Dasandi, and Slava Mikhaylov, "Understanding State Preferences With 
Text As Data: Introducing the UN General Debate Corpus". Research & Politics, 2017. 
 
 Appendix: 
Transformations: 
Transformation Meaning 
map(func) Return a new distributed dataset formed by passing each element of the 
source through a function func. 
filter(func) Return a new dataset formed by selecting those elements of the source on 
which funcreturns true. 
flatMap(func) Similar to map, but each input item can be mapped to 0 or more output 
items (so funcshould return a Seq rather than a single item). 
union(otherDataset) Return a new dataset that contains the union of the elements in the source 
dataset and the argument. 
intersection(otherDataset) Return a new RDD that contains the intersection of elements in the source 
dataset and the argument. 
distinct([numPartitions])) Return a new dataset that contains the distinct elements of the source 
dataset. 
groupByKey([numPartitions]) When called on a dataset of (K, V) pairs, returns a dataset of (K, 
Iterable<V>) pairs. 
Note: If you are grouping in order to perform an aggregation (such as a 
sum or average) over each key, using reduceByKey or aggregateByKey will 
yield much better performance. 
Note: By default, the level of parallelism in the output depends on the 
number of partitions of the parent RDD. You can pass an 
optional numPartitions argument to set a different number of tasks. 
reduceByKey(func, 
[numPartitions]) 
When called on a dataset of (K, V) pairs, returns a dataset of (K, V) pairs 
where the values for each key are aggregated using the given reduce 
function func, which must be of type (V,V) => V. Like in groupByKey, the 
number of reduce tasks is configurable through an optional second 
argument. 
sortByKey([ascending], 
[numPartitions]) 
When called on a dataset of (K, V) pairs where K implements Ordered, 
returns a dataset of (K, V) pairs sorted by keys in ascending or descending 
order, as specified in the boolean ascending argument. 
join(otherDataset, 
[numPartitions]) 
When called on datasets of type (K, V) and (K, W), returns a dataset of (K, 
(V, W)) pairs with all pairs of elements for each key. Outer joins are 
supported through leftOuterJoin, rightOuterJoin, and fullOuterJoin. 
 
 Actions: 
Action Meaning 
reduce(func) Aggregate the elements of the dataset using a function func (which takes 
two arguments and returns one). The function should be commutative 
and associative so that it can be computed correctly in parallel. 
collect() Return all the elements of the dataset as an array at the driver program. 
This is usually useful after a filter or other operation that returns a 
sufficiently small subset of the data. 
count() Return the number of elements in the dataset. 
first() Return the first element of the dataset (similar to take(1)). 
take(n) Return an array with the first n elements of the dataset. 
countByKey() Only available on RDDs of type (K, V). Returns a hashmap of (K, Int) pairs 
with the count of each key. 
foreach(func) Run a function func on each element of the dataset. This is usually done 
for side effects such as updating an Accumulator or interacting with 
external storage systems. 
Note: modifying variables other than Accumulators outside of 
the foreach() may result in undefined behavior. See Understanding 
closures for more details. 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:代寫comp2022、代做c/c++,Python程序設計
  • 下一篇:代做320SC編程、代寫Python設計程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲欧洲在线观看| 久久精品首页| 亚洲专区一区二区三区| 国产精品视频一区二区三区| 国内精品久久久久影院 日本资源| 国一区二区在线观看| 国产精品美女www爽爽爽视频| 欧美精品一二三| 免费观看在线综合色| 激情欧美丁香| 国产精品二区在线| 欧美日韩综合视频网址| 亚洲高清资源综合久久精品| 欧美一区二区成人6969| 一本色道久久综合亚洲精品不卡| 欧美午夜www高清视频| 亚洲国产欧美在线| 欧美大香线蕉线伊人久久国产精品| 久久婷婷亚洲| 亚洲精品国产品国语在线app| 久久久久久精| 国产在线欧美| 亚洲国产一区二区在线| 欧美日韩免费一区二区三区| 国产精品成人免费视频| 91久久香蕉国产日韩欧美9色| 国产区精品视频| 久久伊人免费视频| 亚洲欧美日韩精品久久久| 国产一区二区在线免费观看| 国产精品国产三级国产专播精品人| 欧美日产国产成人免费图片| 国产午夜精品福利| 激情伊人五月天久久综合| 亚洲视频一区在线观看| 樱花yy私人影院亚洲| 国产精品视频成人| 国产精品久久综合| 欧美顶级艳妇交换群宴| 免费欧美日韩国产三级电影| 欧美在线视频观看| 麻豆成人91精品二区三区| 亚洲影视九九影院在线观看| 一区二区三区不卡视频在线观看| 日韩午夜电影在线观看| 亚洲色无码播放| 亚洲福利视频专区| 欧美1区2区3区| 国产精品欧美日韩一区| 亚洲精品欧美精品| 噜噜噜躁狠狠躁狠狠精品视频| 亚洲欧美日韩高清| 国产亚洲欧美中文| 久久中文精品| 欧美在线观看视频一区二区三区| 国产午夜久久久久| 国产精品theporn| 国产精品视频999| 亚洲一区尤物| 新狼窝色av性久久久久久| 久久久久一区二区三区四区| 国产亚洲精品自拍| 欧美精品久久久久久久久久| 久久天天躁狠狠躁夜夜av| 欧美一区二区三区四区在线| 欧美日韩三级电影在线| 亚洲国产免费| 在线精品亚洲一区二区| 免费成人黄色片| 国产精品theporn88| 一区二区欧美日韩视频| 久久狠狠亚洲综合| 欧美日韩亚洲一区二区三区在线| 亚洲欧洲三级电影| 91久久线看在观草草青青| 欧美激情乱人伦| 国产欧美日韩一区二区三区在线观看| 国产婷婷成人久久av免费高清| 91久久久一线二线三线品牌| 亚洲影视九九影院在线观看| 欧美天堂亚洲电影院在线观看| 国内精品久久久久影院薰衣草| 亚洲国内精品在线| 欧美日韩麻豆| 亚洲欧洲一级| 9l国产精品久久久久麻豆| 欧美一区二区视频观看视频| 激情久久综合| 国产日韩专区在线| 久久久久国产精品一区二区| 欧美日韩影院| 久久一区精品| 欧美日韩免费高清一区色橹橹| 美日韩精品免费观看视频| 亚洲精品中文字幕女同| 国产一区二区无遮挡| 国产亚洲成人一区| 一区一区视频| 亚洲国产精品一区在线观看不卡| 国产精品国产三级国产普通话三级| 亚洲在线视频| 欧美日韩视频免费播放| 亚洲天堂第二页| 欧美久久成人| 国产中文一区二区三区| 亚洲精品社区| 欧美va亚洲va日韩∨a综合色| 国产深夜精品福利| 亚洲高清不卡在线| 国产日韩在线一区| 亚洲精品久久久久久下一站| 国产精品一区在线观看你懂的| 黄色另类av| 国产精品va在线播放| 亚洲激情专区| 欧美日韩综合另类| 伊人婷婷久久| 欧美激情视频一区二区三区不卡| 欧美在线资源| 久久天堂av综合合色| 国产精品黄页免费高清在线观看| 亚洲国产成人高清精品| 先锋a资源在线看亚洲| 久久精品免费看| 国产精品theporn88| 亚洲欧美美女| 国产亚洲欧美日韩在线一区| 国产精品成人一区二区三区夜夜夜| 国产精品mv在线观看| 欧美精品三级| 久久aⅴ国产欧美74aaa| 噜噜噜久久亚洲精品国产品小说| 国产欧美日韩视频一区二区| 国产午夜精品理论片a级探花| 亚洲日本成人网| 一区二区三区欧美在线| 欧美屁股在线| 国产精品久久久久久久久久三级| 一区二区三区视频在线播放| 亚洲精品乱码久久久久久久久| 欧美一区二区视频在线观看| 欧美好骚综合网| 国语自产精品视频在线看8查询8| 国产免费一区二区三区香蕉精| 日韩亚洲国产精品| 国产精品一区二区a| 午夜精品久久久久久久久| 欧美日本一区二区视频在线观看| 国产伦精品一区二区三区| avtt综合网| 久久久www成人免费毛片麻豆| 久久这里有精品视频| 欧美理论在线播放| 国内一区二区三区在线视频| 欧美精选一区| 国内免费精品永久在线视频| 国内一区二区三区| 亚洲国产日韩精品| 欧美精品在线观看一区二区| 亚洲欧美一区二区三区在线| 亚洲专区一区二区三区| 国产欧美在线看| 亚洲视频每日更新| 一区二区视频在线观看|