日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做SCI 3004、c++/Python程序設計代寫
代做SCI 3004、c++/Python程序設計代寫

時間:2024-09-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMP SCI 3004/7064 Operating Systems 
Practical 2 – Virtual Memory Simulation 
Aim 
By doing this practical work, you will learn how to implement page replacement algorithms, gain 
experience in creating and evaluating a simple simulator, and develop your skills in scientific 
writing. 
You should work in groups of size 2 or 3. Each group will submit one simulator and one report. 
Deadlines: Code is due Tuesday 5th September 2023. 
 Report due end of week 8 - Friday 15th September. 
 
Introduction 
In chapter 22, we explore a variety of page replacement algorithms for managing virtual memory. 
The choice of a page replacement algorithm is actually quite a complex matter. To make the 
proper choice, we must know something about real applications. How do they access memory? Do 
they generate many page accesses in order? Do they skip around memory randomly? The only 
way to answer these questions is to see what real applications do. 
In this practical, you will evaluate how real applications respond to a variety of page replacement 
algorithms. Of course, modifying a real operating system to use different page replacement 
algorithms is quite difficult, so we will simulate it instead. You will write a program that emulates 
the behaviour of a memory system using a variety of page replacement algorithms. 
Then, you will use memory traces from real applications to evaluate your algorithms properly. A 
main outcome of your work will be a report. The report itself counts for 60% of this assignment. 
Memory Traces 
We provide you with four memory traces to use with your simulator. Each trace is a real recording 
of a running program, taken from the SPEC benchmarks. Real traces are enormously big: billions 
and billions of memory accesses. However, a relatively small trace will be more than enough to 
capture their memory access patterns. Each trace consists of only one million memory accesses 
taken from the beginning of each program. 
Each trace is a series of lines, each listing a hexadecimal memory address followed by R or W to 
indicate a read or a write. For example, gcc.trace trace starts like this: 
0041f7a0 R 
13f5e2c0 R 
05e78**0 R 
00**58a0 R 
31348**0 W 
Each trace is compressed with gzip, so you will have to download each trace and then uncompress 
it with a command like this: 
> gunzip –d gcc.trace.gz 
Simulator Requirements 
Your job is to build a simulator that reads a memory trace and simulates the action of a virtual 
memory system with a single level page table. The current simulator fixes the pages and page 
frames size to 4 KB (4096 bytes). Your program should keep track of what pages are loaded into 
memory. The simulator accepts 4 arguments as follows: 
• the name of the memory trace file to use. 
• the number of page frames in the simulated memory. 
• the page replacement algorithm to use: rand/lru/esc 
• the mode to run: quiet/debug 
If the mode is "debug", the simulator prints out messages displaying the details of each event in 
the trace. The output from “debug” it is simply there to help you develop and test your code. If the mode is "quiet", then the simulator should run silently with no output until the very end, at which 
point it prints out a summary of disk accesses and the page fault rate. 
As it processes each memory event from the trace, the simulator checks to see if the corresponding 
page is loaded. If not, it should choose a page to remove from memory. Of course, if the page to 
be replaced is dirty, it must be saved to disk. Finally, the new page is to be loaded into memory 
from disk, and the page table is updated. As this is just a simulation of the page table, we do not 
actually need to read and write data from disk. When a simulated disk read or disk write must 
occur, we simply increment a counter to keep track of disk reads and writes, respectively. 
Most of the input (reading a trace), simulation counters and output messages has already being 
implemented in the skeleton files provided for you. 
The skeleton reads the parameters, processes the trace files and for each access it generates a page 
read or write request. Your job is to complete the simulation of the memory management unit for 
each replacement policy: 
• rand replaces a page chosen completely at random, 
• lru always replaces the least recently used page 
• clock performs the replacement algorithm described in the textbook section 22.8. 
You should start thinking how you can keep track of what pages are loaded, how to find if the 
page is resident or not, and how to allocate frames to pages. Some short traces (trace1, trace2 and 
trace3) will be used in the testing script and are provided to facilitate local testing of your code. 
Report 
An important component of this practical is a report describing and evaluating the replacement 
algorithms. Your goal is run the simulator to learn as much as you can about the four memory 
traces (swim, bzip, gcc and sixpack). For example, 
How much memory does each traced program actually need? 
Which page replacement algorithm works best when having a low number of frames? 
Does one algorithm work best in all situations? 
Think carefully about how to run your simulator. Do not choose random input values. Instead, 
explore the space of memory sizes intelligently to learn as much as you can about the nature of 
each memory trace. 
Your group report should have the following sections: 
• Introduction: A brief section that describes using your own words the essential problem of 
page replacement you are trying to investigate. Do not copy and paste text from this 
project description. 
• Methods: A description of the set of experiments that you performed. As it is impossible to 
run your simulator with all possible inputs, so you must think carefully about what 
measurements you need. Make sure to run your simulator with an excess of memory, a 
shortage of memory, and memory sizes close to what each process actually needs. 
• Results: A description of the results obtained by running your experiments. Present the 
results using graphs that show the performance of each algorithm on each memory trace 
over a range of available memory sizes (alike figures 22.6 to 22.9 in the textbook). For 
each graph, explain the results and point out any interesting or unusual data points. 
• Conclusions: Summarize what you have learned from the results. 
The group report must be concise, well structured and free of typos and errors. For reference, a 
typical report length should be around 4 to 6 pages, roughly one page for the introduction and 
methods, half to one page per trace (graph and analysis of its results) and half to one page for 
conclusions. 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





 

掃一掃在手機打開當前頁
  • 上一篇:COMP3702代做、代寫python設計編程
  • 下一篇:代做48730-32548,、c/c++,Python程序設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产精品男人爽免费视频1| 亚洲国产精品一区二区三区| 久久一区二区精品| 亚洲视频一区二区免费在线观看| 欧美另类69精品久久久久9999| 一本色道久久88亚洲综合88| 狂野欧美激情性xxxx欧美| 激情文学一区| 国产精品自拍三区| 国产欧美视频一区二区三区| 亚洲激情网站| 亚洲一区二区成人在线观看| 亚洲第一天堂无码专区| 这里只有精品视频| 国产午夜精品视频免费不卡69堂| 国产精品蜜臀在线观看| 欧美性猛交xxxx乱大交退制版| 亚洲精品免费观看| 国产一区欧美| 国产精品久久久久7777婷婷| 亚洲精品少妇网址| 在线免费日韩片| 国产精品美女主播| 国产乱人伦精品一区二区| 在线中文字幕日韩| 亚洲精品免费在线播放| 国产一级一区二区| 亚洲国产精品久久久久婷婷老年| 先锋影音久久久| 韩日欧美一区二区| 国产在线不卡| 蜜桃av一区二区在线观看| 国产精品丝袜久久久久久app| 国产精品久久久久久一区二区三区| 久久综合九色综合网站| 亚洲午夜精品一区二区三区他趣| 老鸭窝亚洲一区二区三区| 香港久久久电影| 国产欧美亚洲视频| 99人久久精品视频最新地址| 国产精品成人一区二区三区吃奶| 狠狠色噜噜狠狠色综合久| 国内精品视频在线观看| 亚洲视频在线观看网站| 欧美四级剧情无删版影片| 99热这里只有精品8| 免费高清在线视频一区·| 亚洲一区二区三区四区中文| 在线免费高清一区二区三区| 国产日韩欧美另类| 欧美激情一区二区三区不卡| 伊人成综合网伊人222| 亚洲一区二区三区四区中文| 国产精品午夜视频| 久久国产精品99精品国产| 中文精品在线| 蜜桃伊人久久| 亚洲国产精品va在线观看黑人| 国产精品日日做人人爱| 蜜臀av在线播放一区二区三区| 亚洲欧美国产视频| 久久日韩粉嫩一区二区三区| 精品电影一区| 国产欧美日韩专区发布| 亚洲一区成人| 久久午夜色播影院免费高清| 久久这里只有| 久久一区二区三区超碰国产精品| 麻豆亚洲精品| 国产精品网红福利| 最新国产成人av网站网址麻豆| 国产欧美一区二区色老头| 亚洲一区二区精品视频| 国产精品午夜春色av| 欧美一级在线亚洲天堂| 亚洲永久字幕| 欧美成人69| 欧美精品在线免费观看| 韩国精品一区二区三区| 欧美伦理视频网站| 国产一区视频网站| 免费欧美高清视频| 国产精品久久二区二区| 国产日本欧美视频| 欧美日韩一区自拍| 国产精品成人在线观看| 午夜影视日本亚洲欧洲精品| 日韩亚洲国产欧美| 欧美经典一区二区| 欧美在线综合视频| 亚洲激情亚洲| 91久久嫩草影院一区二区| 国产亚洲精品久久久久婷婷瑜伽| 亚洲免费人成在线视频观看| 国产精品成人免费精品自在线观看| 亚洲精品欧美一区二区三区| 中国女人久久久| 国产日韩欧美不卡在线| 国产日韩av一区二区| 国产一区二区三区免费在线观看| 欧美成人r级一区二区三区| 国产欧美一区二区三区在线看蜜臀| 欧美成人一区二区三区| 国产日韩一区二区三区| 欧美日韩国产成人| 国产精品视屏| 亚洲午夜激情在线| 国内自拍一区| 免费在线一区二区| 黄色精品免费| 久久久噜噜噜久久人人看| 一区二区在线观看视频| 国产日韩欧美不卡在线| 亚洲人体偷拍| 国产日韩亚洲欧美综合| 国产欧美欧洲在线观看| 亚洲一品av免费观看| 在线不卡中文字幕播放| 欧美视频日韩视频| 亚洲人成精品久久久久| 欧美一二三视频| 国模吧视频一区| 亚洲人精品午夜| 国产精品亚洲精品| 欧美成人激情在线| 欧美jizzhd精品欧美喷水| 欧美国产高潮xxxx1819| 久久精品视频在线播放| 欧美午夜大胆人体| 久久久精品日韩| 亚洲理论在线观看| 久久精品视频在线| 欧美精品在线一区二区三区| 国产精品视频福利| 亚洲女优在线| 一区二区三区.www| 国产午夜精品麻豆| 亚洲国产成人一区| 欧美美女操人视频| 国产日韩欧美中文| 亚洲国产片色| 校园春色国产精品| 亚洲系列中文字幕| 亚洲精品网站在线播放gif| 欧美大片一区二区三区| 久久av免费一区| 免费在线看成人av| 国产丝袜美腿一区二区三区| 久久久久久成人| 久久er99精品| 伊人久久亚洲影院| 亚洲精品视频在线观看免费| 欧美一区二区高清在线观看| 欧美一区二区视频在线观看2020| 欧美日韩亚洲一区二| 99国产精品私拍| 欧美美女喷水视频| 亚洲福利视频在线| 欧美午夜片在线观看| 欧美精品首页| 国产中文一区| 最新日韩欧美| 久久一日本道色综合久久| 一本久道久久综合婷婷鲸鱼|