日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP 627代寫、代做Python設計程序
COMP 627代寫、代做Python設計程序

時間:2024-08-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMP 627 – Assignment 1 
 
Note: Refer to Eq. 2.11 in the textbook for weight update. Both weights, w1 and b, need to be adjusted. 
According to Eq. 2.11, for input x1, error E = t-y and learning rate β: 
w1_new=w1_old+ β E x1; 
bnew= bold+ β E 
COMP 627 Neural Networks and Applications 
Assignment 1 
Perceptron and Linear neuron: Manual training and real-life case 
studies 
 
Part 1: Perceptron 
[08 marks] 
 
 
 Download Fish_data.csv file from LEARN page. Use this dataset to answer the two questions (i) and (ii) 
below on Perceptron. The dataset consists of 3 columns. The first two columns are inputs (ring 
diameter of scales of fish grown in sea water and fresh water, respectively). The third column is the 
output which states whether the category of the fish is Canadian or Alaskan (the value is 0 for Canadian 
and 1 for Alaskan). Perceptron model classifies fish into Canadian or Alaskan depending on these two 
measures of ring diameter of scales. 
(i) Extract the first AND last row of data and label these rows 1 and 2. Use an initial weight 
vector of [w1= 102, w2= -28, b= 5.0] and learning rate β of 0.5 for training a perceptron 
model manually as below: 
Adjust the weights in example-by-example mode of learning using the two input vectors. 
Present the input data in the order of rows 1 and 2 to the perceptron. After presentation 
of each input vector and corresponding weight adjustment, show the resulting 
classification boundary on the two data points as in Fig. 2.15 in the book. For each round 
of weight adjustment, there will be a new classification boundary line. You can do the 
plots on Excel, by hand, python or any other plotting software. Repeat this for 2 epochs 
(i.e., pass the two input vectors twice through the perceptron). 
(4 marks) 
 
 
(ii) Write python code to create a perceptron model to use the whole dataset in fish.csv to 
classify fish into Canadian or Alaskan depending on the two input measures of ring 
diameter of scales. Use 200 epochs for accurate models. 
 
Modify your python code to show the final classification boundary on the data. 
 
Write the equation of this boundary line. 
Compare with the classification boundary in the book. 
(4 marks) 2 
COMP 627 – Assignment 1 
 
Note: For adjusting weights, follow the batch learning example for linear neuron on page 57 of the 
textbook that follows Eq. 2.36. After each epoch, adjust the weights as follows: 
 
 w1_new=w1_old + β (E1 x1 + E2 x2)/2 
bnew= bold + β (E1 + E2)/2 
where E1 and E2 are the errors for the two inputs. 
 
 
 
Part 2: Single Linear Neuron 
 
[12 marks] 
Download heat_influx_north_south.csv file from LEARN page. Use this dataset to develop a single 
linear neuron model to answer the questions (i) to (v) below. This is the dataset that we learned about 
in the text book and lectures where a linear neuron model had been trained to predict heat influx in 
to a house from the north and south elevations of the house. Note that the dataset has been 
normalised (between 0 and 1) to increase the accuracy of the models. When data (inputs and outputs) 
have very different ranges, normalisation helps balance this issue. 
(i) Use two rows of data (rows 1 and 2 (0.319, 0.929) and (0.302, 0.49)), respectively, to train 
a linear neuron manually to predict heat influx into a home based on the north elevation 
(angle of exposure to the sun) of the home (value in ‘North’ column is the input for the 
single neuron where output is the value in ‘HeatFlux’ column). Use an initial weight vector 
of [b (bias) = 2.1, w1= -0.2] and learning rate of 0.5. Bias input =1. You need to adjust 
both weights, b and w1. 
(3 marks) 
 
a) Train the linear neuron manually in batch mode. Repeat this for 2 epochs. 
 
Note: 
Try to separate the dataset into two datasets based on the value in ‘Canadian_0_Alaskan_1’ column. 
Example code is given below. 
#create dataframe X1 with input columns of the rows with the value 0 in 'Canadian_0_Alaskan_1' column 
X1 = df.loc[df["Canadian_0_Alaskan_1"] == 0].iloc[:, 0:2] 
 
 
Plot the data of two datasets with different markers ‘o’ and ‘x’. 
Plot the decision boundary line using the equation used in Laboratory Tutorial 2 – Part 2 (Please note 
that there is a correction in the equation and the updated assignment is available on LEARN). 
Final plot should be like this. 3 
COMP 627 – Assignment 1 
 
1 2 
Note: To retrieve the mean squared error, you can use the following code 
 
from sklearn.metrics import mean_squared_error 
print(mean_squared_error(Y, predicted_y)) 
b) After the training with the 2 epochs is over, use your final weights to test how the 
neuron is now performing by passing the same two data points again into the neuron 
and computing error for each input (E1 and E2). Compute Mean Square Error (MSE) 
for the 2 inputs using the formula below. 
 
   
2+   
2
 
MSE = 

 
(ii) Write a python program to train a single linear neuron model using all data to predict heat 
influx from north elevation (value in ‘North’ column is the input for the single neuron 
where output is the value in ‘HeatFlux’ column) using all data. Train the model with 3000 
epochs for high accuracy. 
 
Extract the weights of the model and write the equation for the neuron function (linear 
equation showing input-output relationship as in Eq. 2.44) and plot the neuron function 
on data as in Figure 2.34 in the textbook. 
 
Modify the code to retrieve the mean square error (MSE) and R
2
 score for the trained 
neuron model. 
(3 marks) 
 
 
(iii) Write a python program to train a linear neuron on the whole data set to predict heat 
influx from north and south elevations (using the two inputs from the two columns 
‘South’ and ‘North’). Train the model with 3000 epochs for high accuracy. 
 
Extract the weights of the model and write the equation for the network function. 
 
Modify your program to find the Mean Square Error (MSE) and R
2
 score of the model. 
 
Compare the error difference between the previous one-input case (in part (ii)) and the 
current two-input case. 
(4 marks) 
 
(iv) Modify the program to plot the data and the network function on the same plot (Refer to 
the Laboratory Tutorial 4). Plot the network function on the data (3D plot of predicted 
heat influx as a function plotted against north and south elevations.(1 marks) 
Note: Neural Network develops a function (plane/surface) that goes through the data as closely as 
possible. Here, we want to see how close this surface is to the data. Since we have 2 inputs, we need a 
3-D plot to see this. We plot the network function against the two inputs. 
Your final output should look like this: 4 
COMP 627 – Assignment 1 
 
Note: In the plot in part (iv) above, the network function was shown as a surface plotted against the 2 
inputs. However, you can also calculate the NN predicted heat influx for those exact input values for north 
and south elevations in the dataset (as opposed to showing the function) and then plot the predicted heat 
influx and target heat influx on the same 3D plot against the 2 inputs. 
Your final output should look like this: 
(v) Plot the network predicted heat influx values and target heat influx values against the two 
inputs (3D data plot). 
(1 marks) 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代做COMP5216、代寫Java設計編程
  • 下一篇:代做QBUS3330、c++,Python編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲视频一区在线观看| 久久福利精品| 欧美日韩影院| 亚洲无线一线二线三线区别av| 国产精品麻豆成人av电影艾秋| 久久久久欧美精品| 亚洲久久在线| 亚洲精品一线二线三线无人区| 国产视频久久久久| 午夜亚洲福利在线老司机| 欧美人与性动交cc0o| 国产日韩欧美在线观看| 欧美日韩国产a| 极品尤物一区二区三区| 亚洲国产婷婷香蕉久久久久久| 国产亚洲免费的视频看| 欧美国产成人在线| 亚洲午夜久久久久久尤物| 伊人精品成人久久综合软件| 国产精品久久久久久久久久久久久| 亚洲深夜福利| 亚洲影院在线| 欧美福利小视频| 永久91嫩草亚洲精品人人| 欧美肉体xxxx裸体137大胆| 欧美四级在线观看| 狠狠爱www人成狠狠爱综合网| 亚洲欧美中文日韩v在线观看| 国产精品盗摄一区二区三区| 亚洲社区在线观看| 久久久激情视频| 99精品国产热久久91蜜凸| 性色av香蕉一区二区| 免费欧美在线| 亚洲伦理一区| 午夜精彩视频在线观看不卡| 最新成人av网站| 欧美成人a视频| 日韩视频精品在线观看| 永久免费精品影视网站| av成人黄色| 一本色道久久综合精品竹菊| 99国产精品久久久久久久成人热| 国产日产欧美a一级在线| 艳女tv在线观看国产一区| 黑人巨大精品欧美黑白配亚洲| 欧美精品乱码久久久久久按摩| 欧美亚洲在线观看| 欧美国产高潮xxxx1819| 亚洲精品系列| 国产一区视频观看| 永久久久久久| 亚洲伦理在线| 在线成人激情黄色| 国产亚洲成av人在线观看导航| 午夜国产欧美理论在线播放| 久久免费的精品国产v∧| 亚洲精品1区2区| 亚洲一区二区日本| 西西裸体人体做爰大胆久久久| 久久疯狂做爰流白浆xx| 国产精品久久久久国产精品日日| 国产乱码精品一区二区三区忘忧草| 久久久久久久久久久成人| 久久久久国色av免费看影院| 狠狠色丁香婷婷综合影院| 国产日韩在线一区| 久久黄金**| 一区二区三区产品免费精品久久75| 国产一区亚洲一区| 欧美在线免费视频| 亚洲国产婷婷香蕉久久久久久| 欧美另类99xxxxx| 亚洲第一区中文99精品| 亚洲欧美美女| 136国产福利精品导航网址应用| 一二三四社区欧美黄| 国产一区二区三区视频在线观看| 国产精品视频久久| 欧美一区二视频在线免费观看| 国产精品久久久久久av福利软件| 在线观看的日韩av| 欧美日韩亚洲91| 国产香蕉久久精品综合网| 久久亚洲电影| 欧美成人69| 国产精品视频福利| 午夜日本精品| 国产伦精品一区二区三区免费| 亚洲高清视频的网址| 亚洲精品综合| 亚洲福利视频免费观看| 中文av一区特黄| 亚洲国产成人av在线| 母乳一区在线观看| 久久精品91| 亚洲国产女人aaa毛片在线| 在线观看一区二区精品视频| 欧美丰满高潮xxxx喷水动漫| 亚洲亚洲精品在线观看| 国产一区二区三区丝袜| 亚洲精品国精品久久99热一| 国产精品久久久久久久浪潮网站| 亚洲女同同性videoxma| 激情丁香综合| 国产美女高潮久久白浆| 国产一区二区在线观看免费| 欧美巨乳波霸| 99精品视频网| 欧美激情一区二区三级高清视频| 国产欧美日韩综合| 另类欧美日韩国产在线| 亚洲永久免费精品| 在线观看日韩精品| 亚洲精品一区二区三区蜜桃久| 1000精品久久久久久久久| 国产在线精品一区二区夜色| 国产亚洲精品一区二区| 久久久综合激的五月天| 国产日韩欧美综合在线| 韩国视频理论视频久久| 极品av少妇一区二区| 野花国产精品入口| 可以免费看不卡的av网站| 亚洲天天影视| 欧美日韩亚洲不卡| 91久久在线观看| 欧美一区二区视频在线观看| 亚洲综合视频一区| 在线观看国产成人av片| 在线播放亚洲一区| 欧美精品一区二区三区很污很色的| 国内精品福利| 亚洲国产精品黑人久久久| 欧美午夜美女看片| 欧美国产1区2区| 精品999网站| 国产麻豆日韩欧美久久| 一区三区视频| 久久成人18免费网站| 亚洲第一色中文字幕| 欧美一级久久久| 一色屋精品亚洲香蕉网站| 国内精品久久久久影院色| 黄色一区二区在线观看| 国产麻豆成人精品| 国产精品一二一区| 亚洲在线视频观看| 欧美日韩亚洲国产一区| 国产精品久久午夜| 一本综合精品| 欧美视频一区二区| 久久久久久97三级| 欧美激情一区二区三区全黄| 国产精品美女一区二区| 在线看日韩欧美| 亚洲精品亚洲人成人网| 亚洲第一福利视频| | 一区二区三区高清在线观看| 国产精自产拍久久久久久蜜| 国产精品一国产精品k频道56| 欧美高清一区二区| 亚洲国产欧美在线人成|