日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP 627代寫、代做Python設計程序
COMP 627代寫、代做Python設計程序

時間:2024-08-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMP 627 – Assignment 1 
 
Note: Refer to Eq. 2.11 in the textbook for weight update. Both weights, w1 and b, need to be adjusted. 
According to Eq. 2.11, for input x1, error E = t-y and learning rate β: 
w1_new=w1_old+ β E x1; 
bnew= bold+ β E 
COMP 627 Neural Networks and Applications 
Assignment 1 
Perceptron and Linear neuron: Manual training and real-life case 
studies 
 
Part 1: Perceptron 
[08 marks] 
 
 
 Download Fish_data.csv file from LEARN page. Use this dataset to answer the two questions (i) and (ii) 
below on Perceptron. The dataset consists of 3 columns. The first two columns are inputs (ring 
diameter of scales of fish grown in sea water and fresh water, respectively). The third column is the 
output which states whether the category of the fish is Canadian or Alaskan (the value is 0 for Canadian 
and 1 for Alaskan). Perceptron model classifies fish into Canadian or Alaskan depending on these two 
measures of ring diameter of scales. 
(i) Extract the first AND last row of data and label these rows 1 and 2. Use an initial weight 
vector of [w1= 102, w2= -28, b= 5.0] and learning rate β of 0.5 for training a perceptron 
model manually as below: 
Adjust the weights in example-by-example mode of learning using the two input vectors. 
Present the input data in the order of rows 1 and 2 to the perceptron. After presentation 
of each input vector and corresponding weight adjustment, show the resulting 
classification boundary on the two data points as in Fig. 2.15 in the book. For each round 
of weight adjustment, there will be a new classification boundary line. You can do the 
plots on Excel, by hand, python or any other plotting software. Repeat this for 2 epochs 
(i.e., pass the two input vectors twice through the perceptron). 
(4 marks) 
 
 
(ii) Write python code to create a perceptron model to use the whole dataset in fish.csv to 
classify fish into Canadian or Alaskan depending on the two input measures of ring 
diameter of scales. Use 200 epochs for accurate models. 
 
Modify your python code to show the final classification boundary on the data. 
 
Write the equation of this boundary line. 
Compare with the classification boundary in the book. 
(4 marks) 2 
COMP 627 – Assignment 1 
 
Note: For adjusting weights, follow the batch learning example for linear neuron on page 57 of the 
textbook that follows Eq. 2.36. After each epoch, adjust the weights as follows: 
 
 w1_new=w1_old + β (E1 x1 + E2 x2)/2 
bnew= bold + β (E1 + E2)/2 
where E1 and E2 are the errors for the two inputs. 
 
 
 
Part 2: Single Linear Neuron 
 
[12 marks] 
Download heat_influx_north_south.csv file from LEARN page. Use this dataset to develop a single 
linear neuron model to answer the questions (i) to (v) below. This is the dataset that we learned about 
in the text book and lectures where a linear neuron model had been trained to predict heat influx in 
to a house from the north and south elevations of the house. Note that the dataset has been 
normalised (between 0 and 1) to increase the accuracy of the models. When data (inputs and outputs) 
have very different ranges, normalisation helps balance this issue. 
(i) Use two rows of data (rows 1 and 2 (0.319, 0.929) and (0.302, 0.49)), respectively, to train 
a linear neuron manually to predict heat influx into a home based on the north elevation 
(angle of exposure to the sun) of the home (value in ‘North’ column is the input for the 
single neuron where output is the value in ‘HeatFlux’ column). Use an initial weight vector 
of [b (bias) = 2.1, w1= -0.2] and learning rate of 0.5. Bias input =1. You need to adjust 
both weights, b and w1. 
(3 marks) 
 
a) Train the linear neuron manually in batch mode. Repeat this for 2 epochs. 
 
Note: 
Try to separate the dataset into two datasets based on the value in ‘Canadian_0_Alaskan_1’ column. 
Example code is given below. 
#create dataframe X1 with input columns of the rows with the value 0 in 'Canadian_0_Alaskan_1' column 
X1 = df.loc[df["Canadian_0_Alaskan_1"] == 0].iloc[:, 0:2] 
 
 
Plot the data of two datasets with different markers ‘o’ and ‘x’. 
Plot the decision boundary line using the equation used in Laboratory Tutorial 2 – Part 2 (Please note 
that there is a correction in the equation and the updated assignment is available on LEARN). 
Final plot should be like this. 3 
COMP 627 – Assignment 1 
 
1 2 
Note: To retrieve the mean squared error, you can use the following code 
 
from sklearn.metrics import mean_squared_error 
print(mean_squared_error(Y, predicted_y)) 
b) After the training with the 2 epochs is over, use your final weights to test how the 
neuron is now performing by passing the same two data points again into the neuron 
and computing error for each input (E1 and E2). Compute Mean Square Error (MSE) 
for the 2 inputs using the formula below. 
 
   
2+   
2
 
MSE = 

 
(ii) Write a python program to train a single linear neuron model using all data to predict heat 
influx from north elevation (value in ‘North’ column is the input for the single neuron 
where output is the value in ‘HeatFlux’ column) using all data. Train the model with 3000 
epochs for high accuracy. 
 
Extract the weights of the model and write the equation for the neuron function (linear 
equation showing input-output relationship as in Eq. 2.44) and plot the neuron function 
on data as in Figure 2.34 in the textbook. 
 
Modify the code to retrieve the mean square error (MSE) and R
2
 score for the trained 
neuron model. 
(3 marks) 
 
 
(iii) Write a python program to train a linear neuron on the whole data set to predict heat 
influx from north and south elevations (using the two inputs from the two columns 
‘South’ and ‘North’). Train the model with 3000 epochs for high accuracy. 
 
Extract the weights of the model and write the equation for the network function. 
 
Modify your program to find the Mean Square Error (MSE) and R
2
 score of the model. 
 
Compare the error difference between the previous one-input case (in part (ii)) and the 
current two-input case. 
(4 marks) 
 
(iv) Modify the program to plot the data and the network function on the same plot (Refer to 
the Laboratory Tutorial 4). Plot the network function on the data (3D plot of predicted 
heat influx as a function plotted against north and south elevations.(1 marks) 
Note: Neural Network develops a function (plane/surface) that goes through the data as closely as 
possible. Here, we want to see how close this surface is to the data. Since we have 2 inputs, we need a 
3-D plot to see this. We plot the network function against the two inputs. 
Your final output should look like this: 4 
COMP 627 – Assignment 1 
 
Note: In the plot in part (iv) above, the network function was shown as a surface plotted against the 2 
inputs. However, you can also calculate the NN predicted heat influx for those exact input values for north 
and south elevations in the dataset (as opposed to showing the function) and then plot the predicted heat 
influx and target heat influx on the same 3D plot against the 2 inputs. 
Your final output should look like this: 
(v) Plot the network predicted heat influx values and target heat influx values against the two 
inputs (3D data plot). 
(1 marks) 

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp

掃一掃在手機打開當前頁
  • 上一篇:代做COMP5216、代寫Java設計編程
  • 下一篇:代做QBUS3330、c++,Python編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        久久精品国产99国产精品| 国产亚洲精品7777| 欧美黑人在线播放| 国产精品视频一区二区三区| 国产精品久久久久久久久借妻| 国产偷自视频区视频一区二区| 久久精品一区二区三区不卡牛牛| 在线成人免费观看| 亚洲免费激情| 久久精品99无色码中文字幕| 欧美日韩国产免费观看| 国产欧美视频一区二区| 欧美日韩亚洲高清一区二区| 正在播放亚洲一区| 欧美h视频在线| 老司机久久99久久精品播放免费| 欧美午夜不卡在线观看免费| 久久狠狠久久综合桃花| 亚洲欧洲美洲综合色网| 国产精品视屏| 在线观看亚洲专区| 99精品99| 亚洲丁香婷深爱综合| 亚洲九九精品| 精品成人国产在线观看男人呻吟| 国产精品高潮呻吟视频| 欧美午夜精品久久久久久孕妇| 樱花yy私人影院亚洲| 欧美日韩视频在线观看一区二区三区| 久久久久国内| 欧美在线视频一区| 亚洲一级在线观看| 国产精品久久久久久久久久ktv| 午夜久久tv| 亚洲麻豆一区| 国产精品不卡在线| 一本色道久久综合狠狠躁篇怎么玩| 欧美精品在线一区二区| 国产精品久久久91| 国产在线播放一区二区三区| 欧美天天影院| 国产精品裸体一区二区三区| 国产日韩欧美一区二区三区四区| 性欧美暴力猛交69hd| 欧美日韩国产亚洲一区| 亚洲综合国产精品| 国产一区二区三区在线观看免费| 国产亚洲一级| 欧美日韩精品一区二区三区四区| 国产精品综合色区在线观看| 欧美国产日本高清在线| 久久久久久久久久久久久9999| 国产精品高潮呻吟久久| 午夜影院日韩| 亚洲欧美视频在线观看| 欧美日本韩国一区二区三区| 国产精品美女www爽爽爽视频| av不卡免费看| 在线观看欧美日韩| 亚洲一区欧美二区| 国产亚洲一区在线播放| 一本一本久久a久久精品综合妖精| 亚洲砖区区免费| 亚洲精品少妇30p| 亚洲视频精品| 国产一区二区三区免费不卡| 亚洲欧美日韩精品久久亚洲区| 国产日韩亚洲欧美综合| 国产精品一区二区在线| 欧美金8天国| 久久天天躁夜夜躁狠狠躁2022| 一区二区亚洲欧洲国产日韩| 久久成人国产精品| 欧美人与禽性xxxxx杂性| 亚洲午夜精品在线| 国产欧美成人| 久久黄金**| 中文亚洲视频在线| 尤妮丝一区二区裸体视频| 亚洲国产精品嫩草影院| 欧美日韩一卡二卡| 亚洲精品在线观看免费| 亚洲天堂av在线免费观看| 国产精品揄拍500视频| 国产精品久久久999| 欧美一级欧美一级在线播放| 欧美视频在线观看一区二区| 精品va天堂亚洲国产| 国产欧美精品一区二区色综合| 在线欧美小视频| 亚洲一区三区视频在线观看| 欧美视频免费看| 国产欧美精品日韩区二区麻豆天美| 国产午夜亚洲精品理论片色戒| 毛片一区二区三区| 六十路精品视频| 久久久不卡网国产精品一区| 一区二区欧美日韩视频| 一区免费视频| 久久精品一区二区三区中文字幕| 女主播福利一区| 久久精品亚洲精品| 国产精品久久久久久久久果冻传媒| 欧美高清视频在线| 老牛嫩草一区二区三区日本| 欧美激情综合五月色丁香| 韩国福利一区| 亚洲女性裸体视频| 国产精品一区亚洲| 久久国产精品一区二区三区| 久久久夜夜夜| 伊人久久噜噜噜躁狠狠躁| 欧美性猛片xxxx免费看久爱| 日韩视频亚洲视频| 欧美一区三区三区高中清蜜桃| 亚洲图片欧美日产| 欧美日韩免费| 欧美成人蜜桃| 久久久欧美精品sm网站| 久久亚洲春色中文字幕| 亚洲肉体裸体xxxx137| 欧美在线高清| 欧美视频一区二区三区在线观看| 9色porny自拍视频一区二区| 国产一区二区0| 最近中文字幕mv在线一区二区三区四区| 欧美一级专区| 校园春色国产精品| 99在线|亚洲一区二区| 久久女同互慰一区二区三区| 国产精品私拍pans大尺度在线| 国产精品裸体一区二区三区| 欧美麻豆久久久久久中文| 欧美成人一区二免费视频软件| 欧美午夜片在线观看| 久久乐国产精品| 国产精品免费福利| 免费成人毛片| 久久爱另类一区二区小说| 久久亚洲精品网站| 亚洲视频在线观看网站| 亚洲国产另类久久精品| 新片速递亚洲合集欧美合集| 国产婷婷精品| 亚洲日本va午夜在线影院| 欧美三区免费完整视频在线观看| 国产精品成人一区二区三区夜夜夜| 免费亚洲电影在线| 在线免费精品视频| 国产精品v片在线观看不卡| 亚洲一区二区在线免费观看视频| 亚洲日本中文字幕| 一本色道久久综合亚洲精品高清| 亚洲美女av电影| 欧美在线亚洲在线| 激情欧美日韩一区| 国产精品视频久久| 一区二区不卡在线视频 午夜欧美不卡'| 欧美jizz19性欧美| 欧美婷婷六月丁香综合色| 欧美久久久久久久久| 国产专区欧美专区| 欧美成人在线免费观看| 在线免费高清一区二区三区|