<em id="rw4ev"></em>

      <tr id="rw4ev"></tr>

      <nav id="rw4ev"></nav>
      <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
      合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

      代做 COMPSCI 753、代寫 Python,c/c++編程設計

      時間:2024-08-12  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



      Algorithms for Massive Data
      Assignment 1 / Semester 2, 2024 Graph Mining
      General instructions and data
      This assignment aims at exploring the PageRank algorithm on big real-world network data. By working on this assignment, you will learn how to implement some of the PageRank algorithms that we have learned in class.
      Data: Download the web-Google web dataset ’web-Google-final.txt’ from the assignment page on Canvas1. Each line of the file represents a directed edge from a source node to a destination node. There are N = 875713 nodes. Nodes are represented by numeric IDs ranging from 0 to 875712.
      Submission
      Please submit: (1) a file (.pdf or .html) that reports the answers requested for each task, and (2) a source code file (.py or .ipynb) that contains your code and detailed comments. Submit this on the Canvas assignment page by 23:59 NZST, Sunday 11 August. The files must contain your student ID, UPI and name.
      Penalty Dates
      The assignment will not be accepted after the last penalty date unless there are special circumstances (e.g., sickness with certificate). Penalties will be calculated as follows as a percentage of the marks for the assignment.
      • 23:59 NZST, Sunday 11 August – No penalty
      • 23:59 NZST, Monday 12 August – 25% penalty • 23:59 NZST, Tuesday 13 August – 50% penalty
      1This dataset is adapted from SNAP http://snap.stanford.edu/data/web-Google.html
       
      Tasks (100 points)
      Task 1 [40 points]: Implementation of Power Iteration Algorithm.
      In this task you will implement the basic version of the Power Iteration algorithm for PageR- ank. This task involves two sub-tasks, as follows:
      (A) [25 points] Implement the power iteration algorithm in matrix form to calculate the rank vector r, without teleport, using the PageRank formulation:
      r(t+1) = M · r(t)
      The matrix M is an adjacency matrix representing nodes and edges from your downloaded dataset, with rows representing destination nodes and columns representing source nodes. This matrix is sparse2. Initialize r(0) = [1/N, . . . , 1/N]T . Let the stop criteria of your power iteration algorithm be ||r(t+1) − r(t)||1 < 0.02 (please note the stop criteria involves the L1 norm). Spider traps and dead ends are not considered in this first task.
      (B) [15 points] Run your code on the provided Google web data to calculate the rank score for all the nodes. Report: (1) The running time of your power iteration algorithm; (2) The number of iterations needed to stop; (3) The IDs and scores of the top-10 ranked nodes.
      Task 2 [10 points]: Understanding dead-ends.
      In this task, before extending your code to support dead-ends using teleport, you will run some analysis on your current implementation from Task 1. This second task involves two sub-tasks:
      (A) [5 points] Calculate and report the number of dead-end nodes in your matrix M.
      (B) [5 points] Calculate the leaked PageRank score in each iteration of Task 1 (B). The leaked PageRank score is the total score you lose in that iteration because of dead-ends (hint: see example on slide 2 of W1.3 lecture notes). Create a plot that shows how this leaked score behaves as iterations progress. Explain the phenomenon you observe from this visualization.
      2Consider using a sparse matrix (e.g., use scipy.sparse in Python) in your implementation, so that your algorithm should stop within a few seconds in a basic computer. If your algorithm can’t stop within several minutes, you may want to check your implementation.
       1

      Task 3 [50 points]: Implementation of Power Iteration with Teleport.
      In this task, you will extend your implementation from Task 1 using the teleport mechanism to handle both dead-ends and spider traps. This task involves three sub-tasks:
      (A) [25 points] Extend your PageRank code to handle both spider traps and dead ends using the idea of teleport. In this task, your implementation will allow to teleport randomly to any node. Code the PageRank with teleport formulation that, using the sparse matrix M, for each iteration works in three steps (slide 8 of W1.3 lecture notes):
      Step 1: Calculate the r ranks of current iteration rnew (in matrix form): rnew =βM·rold
      Step 2: Calculate the constant S for teleport:
      S = 􏰀 rnew
      j j
      Step 3: Update rnew with teleport:
      rnew = rnew + (1 − S)/N
      In your implementation, use β = 0.9. Initialize r(0) = [1/N,...,1/N]T. The stop criteria should be ||rnew − rold||1 < 0.02.
      (B) [15 points] Run your code on the provided Google web data to calculate the rank score for all the nodes. Report: (1) The running time; (2) The number of iterations needed to stop; (3) The IDs and scores of the top-10 ranked nodes.
      (C) [10 points] Vary the teleport probability β with numbers in the set: {1, 0.9, 0.8, 0.7, 0.6}. Report the number of iterations needed to stop for each β. Explain, in words, your findings from this experiment.




      請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp





       

      掃一掃在手機打開當前頁
    1. 上一篇:MAS362 代寫、JAVA/C++編程設計代做
    2. 下一篇:MAST10006代做、Python/c++程序設計代寫
    3. 無相關信息
      合肥生活資訊

      合肥圖文信息
      出評 開團工具
      出評 開團工具
      挖掘機濾芯提升發動機性能
      挖掘機濾芯提升發動機性能
      戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
      戴納斯帝壁掛爐全國售后服務電話24小時官網
      菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
      菲斯曼壁掛爐全國統一400售后維修服務電話2
      美的熱水器售后服務技術咨詢電話全國24小時客服熱線
      美的熱水器售后服務技術咨詢電話全國24小時
      海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
      海信羅馬假日洗衣機亮相AWE 復古美學與現代
      合肥機場巴士4號線
      合肥機場巴士4號線
      合肥機場巴士3號線
      合肥機場巴士3號線
    4. 短信驗證碼 酒店vi設計 投資移民

      關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

      Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
      ICP備06013414號-3 公安備 42010502001045

      成人久久18免费网站入口