日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做INFSCI 0510、代寫 java/Python 編程

時間:2024-05-26  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Coursework: Kernel PCA for Linearly-Inseparable Dataset
INFSCI 0510 Data Analysis, Department of Computer Science, SCUPI Spring 2024
This coursework contains coding exercises and text justifications. Please read the instructions carefully and follow them step-by-step. For submission instructions, please read the last section. If you have any queries regarding the understanding of the coursework sheet, please contact the TAs or the course leader. Due on: 23:59 PM, Wednesday, June 5th.
PCA
In our lectures, we introduced principle component analysis (PCA). Given a dataset X ∈ Rd×n with n data points of d dimensions, we are interested to project X onto a low-dimensional subspace, where the basis vectors U ∈ Rd×k are the principle components (PC), computed as follows:
X􏰀 = U ΣV T , (1) where X􏰀 is the standardised version of X with zero-mean. Eq. (1) is called singular value decompo-
sition (SVD).
Based on the PC matrix U, the projection for low-dimensional features Z ∈ Rk×n, with k < d, is presented as:
Z = UT X. (2) Compared with X, these low-dimensional features Z carry substantial information within less
dimensionality, therefore favored for the learning task.
Kernel Trick
Besides the PCA process for dimensionality reduction, we also introduced dimensionality expan- sion in our lectures by change of basis. For a linearly-inseparable dataset X ∈ Rd×n, it is possible to find a hyperplane for the classification task with 0 error by transforming X onto a high-dimensional superspace. In this case, the classification task will be conducted with the transformed data, repre- sented as φ(X) ∈ RD×n with D > d, φ(·) denotes the transformation function. By projecting the hyperplane back to the original space, we can produce a non-linear solution for the classification task.
However, recall from the lectures, such a change of basis may be computational expensive. To solve this issue, we introduced the kernel trick. Specifically, to perform the classification task for the projected dataset φ(X), we can use a kernel function K(·,·) that computes the dot product ⟨φ(xi),φ(xj)⟩ of any two projected samples xi and xj, presented as:
K(xi,xj) = ⟨φ(xi),φ(xj)⟩, (3)
where kernel function K(·,·) computes the dot product with the inputs xi and xj. Hence, such a dot product is calculated without explicitly computing the computational-expensive transformation φ(X). There are many kernel functions to use, in this coursework, we will focus on two types of kernels:
  1
􏰀

1. Homogeneous Polynomial kernel : K(xi,xj) = (⟨xi,xj⟩)p, where p > 0 is the polynomial degree.
2. Radial Basis Function (RBF) kernel: also called Gaussian kernel, K(xi,xj) = e−γ∥xi−xj∥2, where
γ = 1 and σ is the width or scale of a Gaussian distribution centered at x .
Kernel PCA
2σ2
j
Kernel PCA is a combined technique of PCA and the kernel trick, where we are still interested in using the PCA process to find the features Z ∈ Rk×n. However, the dimensionality of these features are now ranging from 1 to a large number D, i.e., k ∈ [1, D). The reason is because we first transformed X to a superspace φ(X) ∈ RD×n, then applying the PCA process to produce the features.
Also, we would like to avoid the explicit computation of the high-dimensional φ(X), which can be done by involving the kernel function K(·,·) into the PCA process. Such a kernel PCA process of producing Z is not linear anymore, allowing us to find non-linear solution for classification task, which is very useful when solving a classification task on a linearly-inseparable dataset X ∈ Rd×n with a low dimensionality, e.g., d = 2.
Dataset and Task Summary
The dataset for this coursework is the Circles Dataset, a synthetic dataset widely used to design and test models. The dataset contains 500 samples varying in two classes, i.e., X ∈ R2×500. To load the dataset, please download the Circles.data file from the Blackboard. The data file is constructed by three columns of data: the first two columns represent the two features of X, while the third column denotes the class labels, i.e., class 1 or class 2. Try plot the dataset and see how the two-class samples are distributed.
The task in this course work is using kernel PCA to transform the original dataset X ∈ R2×500 into a linearly-separable dataset Z ∈ Rk×500 with the minimum number of PCs, i.e., a minimum k value. To confirm if the dataset can be made linearly separable, we will use a very simple classification model, decision stump. The whole process can be divided into the following steps:
1. Choose a kernel function with appropriate hyperparameter value.
2. Apply kernel PCA on the original set X ∈ R2×500 to generate the transformed data Z ∈ Rk×500.
3. Find the minimum number of PCs, i.e., the minimum k value required to classify all data points
in Z correctly, using only one decision stump.
The tasks to complete are elaborated into different exercises, which will be detailed in following sections. When solving these tasks, make sure to maintain the Circles.data file under the same directory with your code file.
Exercises **3
Exercise 1 (35 marks) :
• Please use equations to mathematically prove how we can apply PCA on φ(X) without explicitly computing φ(X). (20 marks)
• Please use equations to mathematically prove how to compute the transformed dataset Z, i.e., the projection, without linking to any computation of φ(X). (15 marks)
Hint: recall how SVD works with φ(X), then link the SVD with the result of the kernel function, i.e., the kernel matrix K.
2

Note: don’t forget the standardisation procedure before the PCA process.
Important: the full marks can be awarded to the following Exercise 2 and Exercise 3 only if the answers to Exercise 1 are correct, otherwise, we will only award 50% of the total marks to any following tasks that are related to the theories in Exercises 1, because we regard your code or any discussions in these tasks as those built from wrong theories, although they may be correct inside the task range.
Exercise 2 (30 marks) :
Based on the theories from Exercise 1, choose the kernel (Homogeneous Polynomial or Gaussian) and the corresponding hyperparameters that can be used in conjunction with PCA to produce a linearly-separable dataset Z. Implement the kernel PCA, and answer several questions to justify your selection, as follows:
• Provide the code snippet with results to show your correct implementation of kernel PCA. (15 marks)
• What kind of projection can be achieved with the Homogeneous Polynomial kernel and with the Gaussian kernel? (5 marks)
• What is the influence of the degree p in a Homogeneous Polynomial kernel? (5 marks)
• How can one relate the Gaussian width σ to the data available? (5 marks)
Note: don’t forget the standardisation procedure before the PCA process.
Note: you can use cross-validation to select hyperparameters, however, make sure that the selected
ones are the most appropriate ones for the whole dataset.
Important: there are ready-to-use implementations of kernel PCA in Python. You must imple- ment your own solution and must not use any such libraries, otherwise, 0 marks will be given to any related tasks. Your code from assignment 4 can be used as a starting point to complete this coursework. More specifically:
Libraries that implement basic operations can be used in the coursework, for example: - mean, variance, centre data
- plotting
- matrix and vector multiplications, inverse, transpose
- computation of distance, divergence, or accuracy - singular value decomposition
Libraries that implement the main solutions operations must not be used in the coursework: - the linear version of PCA
- the non-linear version of PCA, i.e., kernel PCA
Exercise 3 (30 marks) :
After the kernel PCA implementation and hyperparameter reasoning from Exercise 1, the next step is to build one decision stump that correctly classify all the samples in the transformed dataset Z. Please complete the following tasks:
• Determine the minimum number of PCs required to classify all the samples in the dataset Z correctly, using one decision stump. (10 marks)
• Please justify the metric used to fit the decision stump. (5 marks)
• Provide the splitting rule and the accuracy of the decision stump. (5 marks)
• Plot the visualization of the input data of the decision stump, i.e., the **D features. (5 marks)
• For the transformed dataset Z, if the minimum number of PCs satisfies k ≤ 3, plot the visu-
alization of the transformed dataset Z. Otherwise (if k > 3), simply state the incapability of providing the visualization by providing your results of k > 3. (5 marks)
3

Extras (5 marks) :
Your code (.ipynb jupyter file) should be clearly and logically structured, any answers or discussions to the exercises should be well-written and adequately proofread before submission. A total of 5 marks are for the organization and explanation (comments) of your code, also for the organization and presentation of your answers or discussions in the report (.pdf file).
Submission
Your submission will include two files:
1. A report file (.pdf) with all your answers or any discussions of all the tasks in Exercise **3.
2. A jupyter notebook file (.ipynb file) with all your code and appropriate explanations to
understand your code.
Our marking process may help you structure your report and code:
1. For each task in Exercise **3, we will look for answers from your report. Therefore, please answer all the tasks in your report. For any tasks that require any code snippets, please also attach them in your report, which can be done through screenshots.
2. We will also run your jupyter notebook and see if your code can provide results that align with the answers in your report, especially. When checking for the last time about whether your code can generate the correct results, please remember to Restart Kernel and Clear Outputs of All Cells. As we will do the same to examine your code.
3. Note that when running your code, we will place the Circles.data file under the same direc- tory with your jupyter notebook file. Hence, please do the same when testing your code, and avoid using any absolute path in your code.
In the end, please compress the two files into a .zip file, and name the .zip file as: ”[CW]-[Session Number]-[Student ID]-[Your name]”
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp















 

掃一掃在手機打開當前頁
  • 上一篇:中國人在越南遣返回國原因有哪些(越南被遣返怎么處理)
  • 下一篇:長沙旅行社代辦越南簽證多少錢(怎么選擇好的旅行社)
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美福利电影在线观看| 欧美一二三区精品| 精品成人久久| 国产亚洲成精品久久| 国产精品多人| 一本大道久久a久久精品综合| 久久久女女女女999久久| 国产精品入口夜色视频大尺度| 欧美视频一区二区在线观看| 亚洲毛片av| 亚洲性图久久| 亚洲黑丝一区二区| 欧美三级电影网| 亚洲性夜色噜噜噜7777| 欧美精品一区二区在线观看| 亚洲第一区色| 久久久久久久久综合| 久久一区二区三区国产精品| 久久久精品日韩欧美| 国产中文一区二区| 欧美人成在线视频| 欧美一区免费视频| 欧美二区视频| 91久久久一线二线三线品牌| 性欧美18~19sex高清播放| 黄色亚洲网站| 亚洲免费影视| 欧美一区二区在线观看| 欧美高清一区二区| 亚洲日本在线观看| 欧美成人资源网| 夜夜爽夜夜爽精品视频| 亚洲欧美国产精品va在线观看| 国产精品女同互慰在线看| 欧美日韩在线一区二区| 国产毛片一区| 欧美一级夜夜爽| 欧美视频一区二区| 亚洲精品国产精品国自产观看| 亚洲精品乱码久久久久久蜜桃91| 国产精品女同互慰在线看| 韩国久久久久| 国产精品高潮呻吟久久av无限| 欧美精品日韩| 欧美日韩精品在线播放| 国产精品大片wwwwww| 麻豆av一区二区三区| 亚洲人成网站999久久久综合| 亚洲靠逼com| 99热免费精品在线观看| 国产精品伦理| 免费看的黄色欧美网站| 99国产一区二区三精品乱码| 在线天堂一区av电影| 国产日韩欧美一区二区三区四区| 欧美激情四色| 亚洲国产欧美一区| 久久久成人精品| 久久嫩草精品久久久精品| 亚洲高清免费在线| 久久青草福利网站| 亚洲国产一区二区精品专区| 欧美一区二区久久久| 久久久女女女女999久久| 亚洲第一页中文字幕| 欧美在线播放视频| 亚洲精品久久久久久久久久久| 久久gogo国模裸体人体| 亚洲国产精品美女| 欧美激情一二三区| 日韩系列在线| 欧美国产欧美亚洲国产日韩mv天天看完整| 久久综合色天天久久综合图片| 国产精品私房写真福利视频| 日韩视频第一页| 日韩一级在线| 欧美激情第4页| 久久九九有精品国产23| av不卡在线看| 欧美婷婷在线| 国产精品一级在线| 一本色道久久综合亚洲精品不| 久久精品30| 国内一区二区在线视频观看| 国产精品萝li| 欧美日韩伦理在线| 欧美日韩国产123区| 欧美视频在线观看一区| 免费亚洲视频| 国产欧美日韩一区| 国产欧美一区二区精品婷婷| 欧美日韩成人激情| 欧美1区2区视频| 午夜一级在线看亚洲| 亚洲毛片视频| 在线观看视频免费一区二区三区| 国产一区二区三区四区五区美女| 欧美福利视频一区| 国产亚洲精品成人av久久ww| 久久久久国产精品厨房| 国产日韩一区二区| 亚洲看片免费| 国产精品久久久91| 欧美成人伊人久久综合网| 亚洲电影欧美电影有声小说| 欧美日韩一区三区四区| 玖玖玖免费嫩草在线影院一区| 欧美二区在线看| 欧美午夜国产| 国产乱码精品一区二区三区不卡| 午夜天堂精品久久久久| 国产精品久久久久久久久| 老司机精品福利视频| 欧美电影资源| 羞羞视频在线观看欧美| 国产精品久久久久久久久免费樱桃| 在线精品国产成人综合| 欧美精品一区二区视频| 欧美大片网址| 亚洲无线一线二线三线区别av| 蜜臀a∨国产成人精品| 久久精品卡一| 欧美日产一区二区三区在线观看| 免费永久网站黄欧美| 国产精品专区一| 国产精品综合av一区二区国产馆| 欧美成人午夜免费视在线看片| 六月天综合网| 999在线观看精品免费不卡网站| 一区二区三区鲁丝不卡| 久久精品亚洲| 欧美国产精品中文字幕| 久久亚洲春色中文字幕久久久| 亚洲国产成人av在线| 在线观看中文字幕亚洲| 一区二区日本视频| 欧美美女福利视频| 亚洲激情影院| 久久国产精品黑丝| 欧美va亚洲va日韩∨a综合色| 在线亚洲国产精品网站| 国产精品自拍三区| 亚洲综合另类| 久久久噜噜噜久久人人看| 久久网站热最新地址| 国产午夜精品久久久久久免费视| 亚洲人成小说网站色在线| 亚洲精品一线二线三线无人区| 欧美日韩精品免费观看视频| 欧美一区成人| 亚洲视频网在线直播| 国内外成人免费激情在线视频| 亚洲视频在线观看视频| 国产精品一区二区女厕厕| 欧美天天在线| 欧美人妖在线观看| 亚洲直播在线一区| 亚洲第一免费播放区| 亚洲一区一卡| 欧美性片在线观看| 国产精品国产三级国产aⅴ无密码| 午夜一区二区三视频在线观看| 亚洲午夜精品久久久久久浪潮| 久久综合久久综合久久|