日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CS373 COIN、代做Python設計程序

時間:2024-05-24  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



DETECTION 
ASSIGNMENT
2024 Semester 1
1
Version 2.2Deadline: 3rd June 2024, 23:59pm
●In this assignment, you will write a Python code pipeline to automatically detect all the coins in the 
given images. This is an individual assignment, so every student has to submit this assignment! This 
assignment is worth 15 marks.
●We have provided you with 6 images for testing your pipeline (you can find the images in the 
‘Images/easy’ folder).
○Your pipeline should be able to detect all the coins in the image labelled with easy-level. This will 
reward you with up to 10 marks.
○For extension (up to 5 marks), try images labelled as hard-level images in the “Images/hard” folder.
○Write a short reflective report about your extension. (Using Latex/Word)
●To output the images shown on the slides for checking, you may use the following code:
fig, axs = pyplot.subplots(1, 1)
# replace image with your image that you want to output
axs.imshow(image, cmap='gray')
pyplot.axis('off')
pyplot.tight_layout()
pyplot.show()
2SUBMISSION
Please upload your submission as a zipped file of the assignment folder to the UoA 
Assignment Dropbox by following this link: 
https://canvas.auckland.ac.nz/courses/103807/assignments/3837**
●Don’t put any virtual environment (venv) folders into this zip file, it just adds to the size, and we 
will have our own testing environment.
●Your code for executing the main coin detection algorithm has to be located in the provided 
“CS3**_coin_detection.py” file!
●You can either put all of your code into that file, or use a modular structure with additional files 
(that, of course, have to be submitted in the zip file). However, we will only execute the 
“CS3**_coin_detection.py” file to see if your code works for the main component!
●The main component of the assignment (“CS3**_coin_detection.py”) must not use any non-built-in 
Python packages (e.g., PIL, OpenCV, NumPy, etc.) except for Matplotlib. Ensure your IDE hasn’t 
added any of these packages to your imports.
●For the extensions, please create a new Python source file called 
‘CS3**_coin_detection_extension.py’
; this will ensure your extension part doesn’t mix up with the 
main component of the assignment. Remember, your algorithm has to pass the main component 
first!
●Including a short PDF report about your extension.
●Important: Use a lab computer to test if your code works on Windows on a different machine 
(There are over 300 students, we cannot debug code for you if it doesn’t work!)
3easy_case_1 final output
easy_case_2 final output
easy_case_4 final output easy_case_6 final outputASSIGNMENT STEPS
5
1. Convert to greyscale and normalize
I. Convert to grey scale image: read input image using the ‘readRGBImageToSeparatePixelArrays()’ helper 
function. Convert the RGB image to greyscale (use RGB channel ratio 0.3 x red, 0.6 x green, 0.1 x blue), 
and round the pixel values to the nearest integer value.
II. Contrast Stretching: stretch the values between 0 to 255 (using the 5-95 percentile strategy) as described 
on lecture slides ImagesAndHistograms, p20-68). Do not round your 5% and 95% cumulative histogram 
values. Your output for this step should be the same as the image shown on Fig. 2.
Hint 1: see lecture slides ImagesAndHistograms and Coderunner Programming quiz in Week 10.
Hint 2: for our example image (Fig. 1), the 5_percentile (f_min) = 86 and the 95_percentile (f_max) = 1**.
Fig. 1: input Fig. 2: step 1 output
We will use this image 
(‘easy_case_1’) as an 
example on this slides2. Edge Detection
I. Apply a 3x3 Scharr filter in horizontal (x) and vertical (y) directions independently to get the edge maps (see 
Fig. 3 and Fig. 4), you should store the computed value for each individual pixel as Python float.
II. Take the absolute value of the sum between horizontal (x) and vertical (y) direction edge maps (see Hint 4). You 
do not need to round the numbers. The output for this step should be the same as the image shown on Fig. 5.
Hint 1: see lecture slides on edge detection and Coderunner Programming quiz in Week 11.
Hint 2: please use the 3x3 Scharr filter shown below for this assignment:
6
Hint 4: you should use the BorderIgnore option and set border 
pixels to zero in output, as stated on the slide Filtering, p13.
Hint 5: for computing the edge strength, you may use the 
following equation:
gm
(x, y) = |gx
(x, y)| + |gy
(x, y)|
Absolute grey level 
gradient on the 
horizontal direction
Absolute grey level 
gradient on the vertical 
direction
Edge map on 
horizontal and 
vertical
Fig. 5: Step 2 
output (gm
)
Fig. 4: Edge map 
(gy
) on vertical 
direction
Fig. 3: Edge map 
(gx
) on horizontal 
direction7
3. Image Blurring
Apply 5x5 mean filter(s) to image. Your output for this step should be the same as the image shown on 
Fig. 7.
Hint 1: do not round your output values.
Hint 2: after computing the mean filter for one 5x5 window, you should take the absolute value of your 
result before moving to the next window.
Hint 3: you should use the BorderIgnore option and set border pixels to zero in output, as stated on the 
slide Filtering, p13.
Hint 3: try applying the filter three times to the image sequentially.
Hint 4: see lecture slides on image filtering and Coderunner Programming quiz in Week 11.
Fig. 7: Step 3 output Fig. 6: Grayscale histogram for output from step 38
4. Threshold the Image
Perform a simple thresholding operation to segment the coin(s) from the black background. After 
performing this step, you should have a binary image (see Fig. 10).
Hint 1: 22 would be a reasonable value for thresholding for our example image, set any pixel value 
smaller than 22 to 0; this represents your background (region 1) in the image, and set any pixel value 
bigger or equal to 22 to 255; which represents your foreground (region 2) – the coin.
Hint 2: see lecture slides on image segmentation (p7) and see Programming quiz on Coderunner on 
Week 10.
Fig. 9: Step 3 output Fig. 10: Step 4 output Fig. 8: Grayscale histogram for output from step 39
5. Erosion and Dilation
Perform several dilation steps followed by several erosion steps. You may need to repeat the dilation 
and erosion steps multiple times. Your output for this step should be the same as the image shown on Fig. 
11.
Hint 1: use circular 5x5 kernel, see Fig. 12 for the kernel details.
Hint 2: the filtering process has to access pixels that are outside the input image. So, please use the 
BoundaryZeroPadding option, see lecture slides Filtering, p13.
Hint 2: try to perform dilation 3-4 times first, and then erosion 3-4 times. You may need to try a couple 
of times to get the desired output.
Hint 3: see lecture slides on image morphology and Coderunner Programming quiz in Week 12.
Fig. 11: Step 5 output
Fig. 12: Circular 5x5 kernel for 
dilation and erosion10
6. Connected Component Analysis
Perform a connected component analysis to find all connected components. Your output for this 
step should be the same as the image shown on Fig. 13.
After erosion and dilation, you may find there are still some holes in the binary image. That is 
fine, as long as it is one connected component.
Hint 1: see lecture slides on Segmentation_II, p4-6, and Coderunner Programming quiz in Week 
12.
Fig. 13: Step 6 outputWe will provide code for drawing the bounding box(es) 
in the image, so please store all the bounding box 
locations in a Python list called ‘bounding_box_list’, so 
our program can loop through all the bounding boxes 
and draw them on the output image.
Below is an example of the ‘bounding_box_list’ for our 
example image on the right.
11
7. Draw Bounding Box
Extract the bounding box(es) around all regions that your pipeline has found by looping over 
the image and looking for the minimum and maximum x and y coordinates of the pixels in the 
previously determined connected components. Your output for this step should be the same as 
the image shown on Fig. 14.
Make sure you record the bounding box locations for each of the connected components your 
pipeline has found.
Bounding_box_list=[[74, 68, 312, 303]]
A list of list
Bounding_box_min_x
Bounding_box_min_y Bounding_box_max_x
Bounding_box_max_y
Fig. 14: Step 7 outputInput
Drawing 
Bounding Box
Color to Gray Scale 
and Normalize
Edge 
Detection
Image 
Blurring Thresholding
Dilation and 
Erosion
Connected 
Component Analysis
12
Coin Detection Full Pipelineeasy_case_1 final output easy_case_2 final output
easy_case_4 final output easy_case_6 final outputEXTENSION
For this extension (worth 5 marks), you are expected to alter some parts of the pipeline.
●Using Laplacian filter for image edge detection
○Please use the Laplacian filter kernel on the right (see Fig. 15).
○You may need to change subsequent steps as well, if you decide to
use Laplacian filter.
●Output number of coins your pipeline has detected.
●Testing your pipeline on the hard-level images we provided.
○For some hard-level images, you may need to look at the size of the connected components to decide which 
component is the coin.
●Identify the type of coins (whether it is a **dollar coin, 50-cent coin, etc.). 
○Since different type of coins have different sizes, you may want to compute the area of the bounding box in 
the image to identify them.
●etc.
Submissions that make the most impressive contributions will get full marks. Please create a new 
Python source file called ‘CS3**_coin_detection_extension.py’ for your extension part, and include a 
short PDF report about your extension. Try to be creative!
14
Fig. 15: Laplacian filter kernel

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:INTE2401代寫、代做Java設計程序
  • 下一篇:CS 369代做、代寫Python編程語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产精品进线69影院| 久久免费观看视频| 国产欧美日韩精品a在线观看| 另类专区欧美制服同性| 久久一区二区三区四区| 欧美日韩另类国产亚洲欧美一级| 欧美一区日韩一区| 亚洲第一伊人| 日韩视频一区二区三区在线播放免费观看| 欧美精品一区三区| 国产女主播一区二区三区| 亚洲最新视频在线| 欧美中文字幕精品| 国产精品久久久久久久久久免费看| 亚洲高清av在线| 久久影视精品| 国产精品亚洲а∨天堂免在线| 在线播放日韩欧美| 亚洲欧美日韩一区二区三区在线| 国产在线播精品第三| 欧美99久久| 欧美一乱一性一交一视频| 精品二区视频| 国产精品国产馆在线真实露脸| 久久久久久999| 欧美深夜福利| 一本在线高清不卡dvd| 欧美伊久线香蕉线新在线| 国产精品xvideos88| 久久精品成人一区二区三区| 精品盗摄一区二区三区| 美日韩精品免费观看视频| 在线观看不卡av| 欧美日韩在线电影| 久久婷婷色综合| 亚洲欧洲精品成人久久奇米网| 最新国产の精品合集bt伙计| 欧美一区二区视频在线| 国产精品porn| 久久久噜噜噜久久久| 亚洲免费av片| 亚洲人成在线免费观看| 99精品久久| 欧美日韩三区| 老司机免费视频一区二区| a4yy欧美一区二区三区| 在线日韩视频| 亚洲视频在线一区观看| 欧美日韩一区二区在线观看视频| 国产精品影片在线观看| 欧美一区二区三区在线免费观看| 久久亚洲精品一区二区| 久久综合久色欧美综合狠狠| 亚洲国产精品123| 久久久欧美一区二区| 久久国产福利国产秒拍| 亚洲综合国产精品| 亚洲精品久久久久中文字幕欢迎你| 久久久久国产精品人| 亚洲男人影院| 国产欧美精品日韩精品| 欧美一区二区精品在线| 欧美一区免费视频| 欧美1区2区视频| 欧美日韩在线精品一区二区三区| 久久狠狠一本精品综合网| 久久综合九九| 影院欧美亚洲| 久久免费精品视频| 在线色欧美三级视频| 韩日在线一区| 国产亚洲成av人在线观看导航| 一区二区成人精品| 国产嫩草一区二区三区在线观看| 亚洲综合精品四区| 久久国产主播| 裸体女人亚洲精品一区| 亚洲一区二区日本| 在线观看成人小视频| 欧美日韩综合在线免费观看| 国产精品sss| 亚洲欧洲在线视频| 欧美激情一区二区三区蜜桃视频| 欧美日韩国产综合网| 精品999日本| 国产精品久久久久久久久果冻传媒| 亚洲精品久久久蜜桃| 亚洲国产第一页| 国产毛片久久| 亚洲人成欧美中文字幕| 亚洲精品在线视频观看| 伊人婷婷欧美激情| 久久国产天堂福利天堂| 韩国av一区二区| 性欧美暴力猛交69hd| 久久久久久久一区二区| 一区二区三区欧美日韩| 欧美尤物巨大精品爽| 欧美1区2区视频| 亚洲国产影院| 国产欧美高清| 亚洲一区二区精品视频| 欧美一区二区三区四区高清| 亚洲一区在线观看免费观看电影高清| 久久综合久久美利坚合众国| 久久久综合免费视频| 欧美日韩伊人| 国产精品任我爽爆在线播放| 欧美成人一品| 黄色成人精品网站| 国产精品美女999| 欧美夫妇交换俱乐部在线观看| 开元免费观看欧美电视剧网站| 欧美一区二区黄色| 亚洲欧美激情一区| 一区二区福利| 欧美国产精品久久| 午夜精品一区二区三区在线播放| 欧美系列亚洲系列| 久久综合五月天婷婷伊人| 欧美午夜在线一二页| 亚洲三级色网| 欧美成人一区二区三区在线观看| 亚洲精品韩国| 国产亚洲精品aa| 在线免费高清一区二区三区| 欧美精品自拍| 欧美美女福利视频| 欧美国产欧美亚州国产日韩mv天天看完整| 欧美久久婷婷综合色| 最新日韩精品| 免费在线成人| 国产一区二区三区在线观看网站| 欧美国产精品久久| 欧美精品免费观看二区| 欧美韩日高清| 久久成人免费网| 老司机精品久久| 国产在线精品一区二区夜色| 美女视频一区免费观看| 亚洲乱亚洲高清| 一区二区三区四区国产精品| 欧美日韩亚洲视频一区| 尤物九九久久国产精品的特点| 日韩视频在线观看免费| 欧美在线高清| 欧美精品一区二区在线播放| 欧美日韩综合视频网址| 国产精品va| 欧美中文字幕久久| 亚洲国产视频一区| 欧美日韩精品久久| 亚洲欧洲日本一区二区三区| 欧美精品亚洲| 国产亚洲精品久久久久婷婷瑜伽| 欧美日韩一区二区三区高清| 亚洲视频一区在线观看| 欧美精品一区二区三区视频| 亚洲国产精品va在线观看黑人| 国产一区二区三区久久| 亚久久调教视频| 国产精品大片wwwwww| 一区二区视频免费完整版观看| 国产日韩综合一区二区性色av|