日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫COMPSCI369、代做Python編程設計

時間:2024-05-10  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



COMPSCI369 - S1 2024
Assignment 3
Due date: See Canvas
Instructions
This assignment is worth 7.5% of the final grade. It is marked out of 75 points.
Provide a solution as a Python notebook and html with output. Your solution should include well
documented code with the calls to reproduce your results.
Include markdown cells with explanation of the results for each question.
Submit the ipynb and html to Canvas:
• the .ipynb file with outputs from the executed code
• a .html version of the notebook with all outputs of executed code showing. (To get this
format, export from the notebook viewer or use nbconvert.)
Within the notebook, set the random seed to some integer of your choosing (using random.seed)
so that the marker can recreate the same output that you get. You can reset the seed before each
question if you like.
Question 1: Simulating random variables and exploring relationships between distributions (20 Points)
(a) Using the inversion sampling technique described in Section 9.2 of the workbook, write a method rand exp that takes a rate parameter λ as input and
produces as output an exponentially distributed random variable with rate parameter λ. Use random.random() to generate uniform random numbers. (4
marks)
(b) Demonstrate your rand exp is correct by comparing the mean and variance
of the output to theoretical values, and also by comparing the output of your
method to a library method. (4 marks)
(c) Use rand exp to write a method rand poiss that takes a parameter λ as input
and produces as output a Poisson distributed random variable with parameter
λ. (4 marks)
(d) Use rand exp to write a method rand gamma that takes an integer parameter
k and rate parameter θ as input and produces as output a gamma distributed
random variable with parameters k and θ. (4 marks)
(e) Explain why your rand gamma method lacks the generality you would typically
want for simulating gamma distributed random variables. (4 marks)
1
Question 2: Simulating outbreaks (55 Points)
A standard model in epidemiology is the SIR model of infectious disease spread. It
has a population of N hosts being divided into 3 compartments, so is known as a
compartmental model:
• the S compartment of those who are susceptible to the disease
• the I compartment of those who are infectious with the disease
• the R compartment of those who are recovered from the disease and now immune (or, more generally, those who are removed from the epidemic through
recovery with immunity, or isolation, or death, etc).
We assume that S + I + R = N.
The model can be deterministic or stochastic. We consider the stochastic version
here. Times between all events are exponentially distributed with the following rates
which depend on the current state of the outbreak, assumed to be (S, I, R):
• the rate of transmissions is βSI/N and the new state is (S − 1, I + 1, R), and
• the rate of recoveries is γI and the new state is (S, I − 1, R + 1).
You can use any functions from the random module that you like for this question.
Probably the only one you need is random.expovariate.
(a) At what point will the epidemic finish? (2 marks)
(b) Write method sim SIR that takes as inputs N, I0, β, γ and produces as output
a list of the event times and the number susceptible, infected and recovered at
each time point. All outbreaks start at time t = 0 with S0 = N −I0. (8 marks)
(c) Run a simulation with N = 1000, I0 = 10, β = 3, γ = 2 and plot the number
infected through time. (4 marks)
(d) Run an experiment and report the results to approximate the probability that
a large outbreak occurs using the same parameters as above but with only one
initial infected. What has usually happened if there is no large outbreak? (6
marks)
(e) The reproduction number R0 = β/γ of the epidemic is the mean number of
transmissions by a single infected in an otherwise susceptible population (Note
there is a bit of a notation clash: we are not referring to the number of recovered
individuals at time 0 in this case.) Using the same parameters as in part (c)
but allowing β to vary, select five values of R0 above and below 1 to explore
whether or not you get an outbreak. Report and explain your results. (6
marks)
(f) Suppose now that the infectious period is fixed, so that hosts are infectious
for exactly 1 time unit. Is the process still Markov? How would you go about
writing code to simulate such an epidemic? (You do not have to actually write
the code here.) (4 marks)
2
(g) Another common model breaks the infectious period up into m sub-periods,
I1, I2, . . . , Im so is an SI1I2 . . . ImR model. Assuming the amount of time each
individual spends in compartment Ij
is exponential with rate γ, what is the
distribution of the total time spent in I1 to Im? (4 marks)
(h) Drawing on what you know about infections, explain why neither a fixed length
nor an exponential distributed infectious period is a great model and why the
m sub-period model may be preferable. What computational advantage does
this formalism have that makes it easier to work with than some arbitrary
distribution for the infection period? (6 marks)
(i) Consider another compartmental model where there is no immunity to an infection so individuals recover straight back into a susceptible state and can get
infected again. This is know as birth death or SIS process. If we look at only
the type of events and ignore the waiting times between them, this process can
be described as a simple Markov chain. If the population size were fixed at
N = 5, and using transition rates (S, I) → (S − 1, I + 1) at rate βSI/N and
(S, I) → (S + 1, I − 1) at rate γI, write down the transition matrix for the
chain. (5 marks)
(j) Implement an SIS process which takes inputs N, I0, β, γ, t, where t is the number
of iterations (i.e., infection or recovery events) the simulation runs for. (6
marks)
(k) Run a simulation study using the SIS simulator with N = 1000, I0 = 10, β =
3, γ = 2 to determine the long term behaviour of this process. Discuss your
results. (4 marks)

請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp














 

掃一掃在手機打開當前頁
  • 上一篇:菲律賓碧瑤到務宿多久 宿務的景點有什么
  • 下一篇:代寫CPT204、代做Java編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美暴力喷水在线| 一区二区日韩免费看| 欧美成人乱码一区二区三区| 亚洲美女黄色| 一区二区免费在线播放| 国产欧美一区二区精品秋霞影院| 久久国产精品72免费观看| 国产字幕视频一区二区| 欧美一区永久视频免费观看| 亚洲欧美另类久久久精品2019| 最新成人av在线| 久久精品国产久精国产一老狼| 午夜久久99| 欧美日韩国产在线看| 欧美激情精品久久久久久| 亚洲欧美日韩在线观看a三区| 久久久精品网| 欧美成人黑人xx视频免费观看| 国产精品亚洲欧美| 国产欧美在线播放| 欧美1区2区视频| 一本久久综合亚洲鲁鲁五月天| 亚洲精品一区二区三区av| 亚洲日本aⅴ片在线观看香蕉| 欧美一区二区三区视频在线观看| 先锋影音一区二区三区| 欧美一区2区三区4区公司二百| 亚洲一区二区三区涩| 国产欧美日韩麻豆91| 亚洲经典三级| 国产精品成人免费视频| 欧美久久一级| 亚洲天堂av在线免费| 欧美成在线观看| 欧美一区二区| 91久久精品一区二区三区| 在线免费观看视频一区| 香蕉久久一区二区不卡无毒影院| 国产精品久久久久久久久久久久久久| 亚洲欧美一区在线| 欧美国产1区2区| 欧美激情一二区| 亚洲国产精品va在线看黑人动漫| 亚洲欧美怡红院| 久久精品综合| 欧美成人免费大片| 国产一区二区三区日韩| 激情久久综合| 日韩香蕉视频| 欧美精品精品一区| 欧美片网站免费| 亚洲欧美日韩一区在线| 久久久久久久久蜜桃| 久久久久.com| 国产精品高潮呻吟久久| 欧美国产日韩二区| 激情婷婷久久| 国产麻豆精品久久一二三| 香蕉成人伊视频在线观看| 麻豆成人在线观看| 在线亚洲自拍| 欧美日韩dvd在线观看| 欧美与黑人午夜性猛交久久久| 激情欧美一区二区| 亚洲久久一区| 国产精品爽黄69| 欧美日本在线观看| 欧美成人性生活| 蜜臀va亚洲va欧美va天堂| 亚洲激情视频在线观看| 久久精品日韩一区二区三区| 亚洲淫性视频| 最新国产乱人伦偷精品免费网站| 欧美jjzz| 国产性色一区二区| 免费观看亚洲视频大全| 亚洲精品一区久久久久久| 国产亚洲成av人片在线观看桃| 99xxxx成人网| 久久夜色精品国产欧美乱| 欧美日韩精品欧美日韩精品一| 午夜视频在线观看一区二区三区| 亚洲国产一区二区视频| 亚洲视频在线二区| 你懂的视频一区二区| 欧美极品在线视频| 欧美亚洲网站| 蜜臀a∨国产成人精品| 欧美日韩美女| 怡红院精品视频在线观看极品| 久久一本综合频道| 久久精品理论片| 欧美影院成年免费版| 欧美成人综合一区| 欧美高清视频在线播放| 久久中文字幕一区二区三区| 亚洲伦理中文字幕| 国产一区二区三区在线观看免费视频| 国产区二精品视| 国产偷自视频区视频一区二区| 国产精品mm| 亚洲免费观看在线观看| 99在线精品视频在线观看| 久久在线视频在线| 久久久国产精品亚洲一区| 国产日韩欧美亚洲| 欧美激情中文不卡| 亚洲日本精品国产第一区| 欧美国产欧美亚洲国产日韩mv天天看完整| 欧美日韩妖精视频| 亚洲区第一页| 欧美性一二三区| 国产精品一区免费视频| 国产欧美亚洲视频| 在线亚洲国产精品网站| 国产精品久久久久久五月尺| 欧美日韩大陆在线| 欧美精品日韩一区| 亚洲国产精品成人综合| 欧美区日韩区| 国产亚洲欧美日韩精品| 国产精品免费网站| 欧美国产一区视频在线观看| 久久久久久久综合色一本| 久久裸体视频| 亚洲国产精品第一区二区三区| 亚洲欧美日韩综合aⅴ视频| 日韩一二三在线视频播| 久久综合色播五月| 99re6这里只有精品视频在线观看| 欧美激情精品久久久久久蜜臀| 国产精品二区二区三区| 在线日韩欧美| 久久人体大胆视频| 国产精品啊啊啊| 欧美日韩黄色一区二区| 国产精品黄色在线观看| 久久夜色精品国产亚洲aⅴ| 一区二区三区日韩| 一本色道久久综合亚洲精品按摩| 亚洲天堂av在线免费| 国产精品sss| 亚洲经典三级| 亚洲欧美日本在线| 欧美日韩福利在线观看| 麻豆成人91精品二区三区| 欧美午夜性色大片在线观看| 欧美一区二区三区喷汁尤物| 久久精品亚洲一区二区三区浴池| 亚洲一区二区三区在线看| 国产精品99久久久久久久女警| 久久精品网址| 国产在线播放一区二区三区| 国产精品久久久久久福利一牛影视| 欧美在线观看视频一区二区| 亚洲精品国产精品国产自| 欧美激情欧美狂野欧美精品| 国产日韩欧美日韩大片| 欧美日韩123| 欧美先锋影音| 亚洲精品日韩在线| 欧美三日本三级少妇三99| 欧美激情一区二区三级高清视频| 韩国av一区二区|