<em id="rw4ev"></em>

      <tr id="rw4ev"></tr>

      <nav id="rw4ev"></nav>
      <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
      合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

      CS 6347代做、MATLAB程序設計代寫

      時間:2024-04-30  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



      Problem Set 4
      CS 63**
      Due: 4/25/2024 by 11:59pm
      Note: all answers should be accompanied by explanations for full credit. Late homeworks
      cannot be accepted. All submitted code MUST compile/run.
      Problem 1: Expectation Maximization for Colorings (40 pts)
      For this problem, we will use the same factorization as we have in past assignments. As on the
      previous assignment, the weights will now be considered parameters of the model that need to be
      learned from samples.
      Suppose that some of the vertices, L ⊆ V , are latent variables in the model. Given m samples
      of the observed variables in V \ L, what is the log-likelihood as a function of the weights? Perform
      MLE using the EM algorithm. Your solution should be written as a MATLAB function that takes
      as input an n × n matrix A corresponding to the adjacency matrix of a graph G, an n-dimensional
      binary vector L whose non-zero entries correspond to the latent variables, and samples which is an
      n × m k-ary matrix where samplesi,t corresponds to observed color for vertex i in the t
      th sample
      (you should discard any inputs related to the latent variables). The output should be the vector of
      weights w corresponding to the MLE parameters for each color from the EM algorithm. Note that
      you should use belief propagation to approximate the counting problem in the E-step.
      function w = colorem(A, L, samples)
      Problem 2: EM for Bayesian Networks (60pts)
      For this problem, you will use the house-votes-84.data data set provided with this problem set.
      Each row of the provided data file corresponds to a single observation of a voting record for a
      congressperson: the first entry is party affiliation and the remaining entries correspond to votes on
      different legislation with question marks denoting missing data.
      1. Using the first three features and the first 300 data observations only, fit a Bayesian network
      to this data using the EM algorithm for each of the eight possible complete DAGs over three
      variables.
      2. Do different runs of the EM algorithm produce different models?
      3. Evaluate your eight models, on the data that was not used for training, for the task of
      predicting party affiliation given the values of the other two features. Is the prediction highly

      請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp













       

      掃一掃在手機打開當前頁
    1. 上一篇:COMP1047代做、代寫Java/Python程序語言
    2. 下一篇:代寫ECS 116、代做SQL設計編程
    3. 無相關信息
      合肥生活資訊

      合肥圖文信息
      出評 開團工具
      出評 開團工具
      挖掘機濾芯提升發動機性能
      挖掘機濾芯提升發動機性能
      戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
      戴納斯帝壁掛爐全國售后服務電話24小時官網
      菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
      菲斯曼壁掛爐全國統一400售后維修服務電話2
      美的熱水器售后服務技術咨詢電話全國24小時客服熱線
      美的熱水器售后服務技術咨詢電話全國24小時
      海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
      海信羅馬假日洗衣機亮相AWE 復古美學與現代
      合肥機場巴士4號線
      合肥機場巴士4號線
      合肥機場巴士3號線
      合肥機場巴士3號線
    4. 上海廠房出租 短信驗證碼 酒店vi設計

      成人久久18免费网站入口