日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

BEE1038代做、代寫Python設計程序

時間:2024-03-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Assignment [100 marks, weight: 30%]
BEE1038: Introduction to Data Science in Economics
Assignment Deadline: Thursday 28th March at 15:00 (GMT)
In this assignment, you will demonstrate your understanding and mastery of programming in
Python using data science tools.
What you will have learnt by the end of Week 6/7 should cover almost everything you will need,
and what you learnt is already enough to start working on some problems. If you are stuck then
read through the notebooks again. If you are still unsure, then have a look online. Google and
Stack OverFlow are your friends!
The grade of this assignment contributes 30% towards your overall grade in the course. The
following aspects need to be shown:
● Basic Python code and functions
● Manipulation and calculations on NumPy arrays and Pandas data frame
● Preparing and preprocessing data.
● Doing a basic plot, and changing plot markers, colors, etc.
● Improving and extending analysis.
● Ability to elaborate on your approach and explain your rationale when completing the
assignment.
Your submission will be a compressed file (.zip) containing the following files:
1. A copy of your Python script named your_name_solution.ipynb (done in Jupyter
Notebook). For example, my notebook file will be named cecilia_chen_solution.ipynb.
2. Same copy printed as a PDF, your_name_solution_code.pdf. Take a look at this link for
instruction on exporting Jupyter Notebok as PDF.
3. Three .png images of your final plots: one that replicates the plot in Problem 4 (p4.png),
one that replicates the plots in Problem 5 (H) (p5h.png), and those that show any
additional analysis in Problem 6 (p6a.png, etc.).
You must explain your approach and rationale using the markdown and/or comments in code.
Any block code or results without appropriate explanation will be panelized. Your scripts must
be sufficient to reproduce your answers to all questions and plots. You are responsible for
making sure that your Jupyter Notebook file will open without errors. Submissions that do not
open may receive a zero.
Collaboration & Misconduct: You are encouraged to think about this assignment in groups or ask
each other for help. If you do, you should do the following: 1) write your own code (no code
copying from others), 2) Report the names of all people that you worked with in your submission,
3) if you received help from someone, write that explicitly, 4) plagiarism of code or writeup will
not be tolerated; do not copy blocks of code in your answers, and 5) do not post your solutions
online (even after the release of your marks). For those who want to evidence your experience
to recruiters, make sure you share a private link to your project/work (or undiscoverable link). If
we can find your answers online anytime until September this year, you will be reported for
misconduct.
The University takes poor academic practice and academic misconduct very seriously and expects
all students to behave in a manner which upholds the principles of academic honesty. Please
make sure you familiarize yourself with the general guidelines and rules from this link1 and this
link2
.
Problem 1 [15 marks]
Write a function that accepts a number n as an input, and it returns n rows that look like the
following pattern. Run your function for n = 21 (the output below is for n=12 and n = 21).
1 http://as.exeter.ac.uk/academic-policy-standards/tqa-manual/aph/managingacademicmisconduct/
2
https://vle.exeter.ac.uk/pluginfile.php/1794/course/section/2**99/A%20Guide%20to%20Citing%2C%20Referencing
%20and%20Avoiding%20Plagiarism%20V.2.0%202014.pdf
 Output when n = 12 output when n = 21
Problem 2 [15 marks]
Solve all the following questions.
A. Write a function that you will call min_distance() that takes as input a list of integers and
returns the minimum (absolute) difference between any two numbers in that list.
For example, min_distance([5,9,1,3]) should return 2
While, min_distance([3,4,1,1]) should return 0
B. Using the min_distance() function you have created, create another function
max_min_distance() that takes a list of lists of integers as an input, and it returns the
maximum value among all the minimum distance values calculated on the inner-lists
(output of min_distance() for each inner-list).
For example, max_min_distance([[5,9,1,3],[3,4,1,1]]) should return 2
C. Demonstrate that your max_min_distance() function works well on the following input:
[[5,2,1,6],[10,0,4],[9,18,1],[100,100,27,9,18],[28,30]]
D. Set the NumPy random seed to 99 (Use the random generator method:
numpy.random.default_rng(seed)). Generate a **dimensional NumPy array of size 1000
consisting of random integers between 0 and 3000 (both included). Reshape this array
into a 2-dimensional array of 50 rows (i.e., 50x20). Test your function on this input.
E. Use the %timeit function to calculate the time for your max_min_distance() algorithm to
run on the input from D.
Problem 3 [20 marks]
A. Set the NumPy random seed to 120.
B. Create a 3x20x5 array (3 depths, 20 rows, 5 columns) of random integers between
-20 and 100 (both included) and print it.
C. For this part, consider the first depth of the array (i.e., first dimension is 0). Print the
number of elements that are strictly more than 60 in each column (of the first depth).
D. For this part, consider the third depth of the array (i.e., first dimension is 2). Print the
number of rows (of the third depth) that contain any positive values.
Problem 4 [20 marks]
In this problem, you need to reproduce the plot shown below, as accurately as possible, from
scratch. First, you will need to generate your x-axis data, and calculate the two series of your yaxis data using the simple functions shown in the legend.
Problem 5 [20 marks]
In this problem, you will use a dataset called harrypotter_dataset. Please follow the instructions
below for your data analysis.
A. Load the harrypotter_dataset.csv file in your notebook, and print the dataset. Print the
number of rows.
B. Print the column headings of the data set.
C. You will notice that column headings have an unnecessary leading space (e.g., “ Book
index”. Write a code to remove the leading space from every column name in the dataset,
replace the space between the column name with _, and convert all the column headings
to lower case. Save changes to your data frame. Re-run code in B to make sure it is solved
now. For example, the original column name is “ Book index”. It should be “book_index”
at the end.
D. Create a new column: ‘runtime_in_hours’ using the column ‘Runtime (in minutes)’. The
new column should have floating numbers (e.g., 150 minutes à 2.5 hours).
E. Create a new column: ‘is_same_date_uk_us’: boolean (True : “UK Movie release date” is
the same as “US Movie release date”, False : otherwise)
F. Calculate the following:
a. Suppose you chose to read one chapter from one of the books at random. What
is the probability that this chapter belongs to Book number 7? (hint: write a code
that divides the number of chapters in Book number 7 by the total number of
chapters)
b. Suppose you chose to watch one minute of one of the movies at random. What is
the probability that it belongs to one of the following movies 1st, 3rd, 5th, or 7th ?
c. What is the percentage of the movies that were released on the same date in both
the UK and the US?
G. Create a new data frame, df_nineties, which contains data (all columns) for books
released before 2000 i.e., ‘Book release year’ is strictly smaller than 2000.
H. Reproduce the following plot: you will get marks for reproducing the plot as accurately as
possible, taking into consideration the steps undertaken to reach the final figure.
Problem 6 [10 marks]
For this problem, use the same data from Problem 5 to perform compelling extra analysis.
Perhaps make use of the other columns in the harrypotter_dataset data set. You will get marks
if you find a compelling and interesting visualisation (one plot is enough, but you may produce
as many as you want if they are all tied into one main idea). Make sure you provide textual
description and/or analysis of the plot. You can also collect additional data to compliment your
analyses. For instance, you can add new columns to the dataset such as a cast list. Please be sure
to write down the source of your additional data collected.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:越南投資簽證年限(如何申請越南投資簽證)
  • 下一篇:ENGG1330代做、Python程序設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    釘釘簽到打卡位置修改神器,2026怎么修改定位在范圍內
    釘釘簽到打卡位置修改神器,2026怎么修改定
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
  • 短信驗證碼 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        久久九九久精品国产免费直播| 久久精品国产久精国产思思| 久久精品国产一区二区三区免费看| 亚洲午夜国产一区99re久久| 国产精品美女一区二区在线观看| 一区二区三区四区五区精品| 久久男人资源视频| 亚洲久久在线| 国内精品久久久久久久97牛牛| 亚洲自拍偷拍一区| 国产精品扒开腿做爽爽爽视频| 亚洲高清视频一区二区| 日韩午夜电影av| 亚洲一区二区综合| 国产精品久久777777毛茸茸| 亚洲精品国产精品乱码不99按摩| 欧美日韩成人在线| 亚洲天堂免费在线观看视频| aa级大片欧美三级| 国产精品狠色婷| 国产一区成人| 欧美96在线丨欧| 亚洲一区二区免费| 国产精品免费一区豆花| 欧美久久久久免费| 国语自产偷拍精品视频偷| 久久久久这里只有精品| 老司机久久99久久精品播放免费| 国产综合欧美| 国产真实精品久久二三区| 麻豆乱码国产一区二区三区| 噜噜噜在线观看免费视频日韩| 国产一区二区按摩在线观看| 欧美精品九九99久久| 亚洲一区二区免费| 蜜月aⅴ免费一区二区三区| 亚洲黄色影院| 国产视频一区二区三区在线观看| 国产精品欧美日韩| 久久成人国产| 亚洲国产美国国产综合一区二区| 国产美女一区二区| 国产欧美日韩亚洲精品| 国产精品国产三级国产专播品爱网| 欧美三级午夜理伦三级中视频| 国产精品卡一卡二卡三| 老司机午夜精品视频在线观看| 国内在线观看一区二区三区| 久久人人爽人人| 一区二区免费看| 国产精品国内视频| 久久精品主播| 午夜亚洲福利在线老司机| 欧美日韩国产成人高清视频| 雨宫琴音一区二区在线| 国产亚洲一级| 依依成人综合视频| 亚洲成人影音| 国产亚洲精品成人av久久ww| 亚洲高清一区二区三区| 美女脱光内衣内裤视频久久影院| 久久中文字幕导航| 国产精品入口日韩视频大尺度| 性欧美在线看片a免费观看| 黄色成人av网| 亚洲欧美国产va在线影院| 亚洲一区二区av电影| 国产午夜精品理论片a级探花| 久久午夜羞羞影院免费观看| 羞羞答答国产精品www一本| 久久久精品国产一区二区三区| 性欧美长视频| 在线日韩av片| 欧美日本精品一区二区三区| 欧美一区二区免费观在线| 欧美综合国产精品久久丁香| 国产精品日韩在线一区| 欧美日韩伦理在线| 久久婷婷国产综合精品青草| 激情综合中文娱乐网| 欧美专区在线观看一区| 老司机凹凸av亚洲导航| 国产亚洲一二三区| 国产真实精品久久二三区| 欧美日韩国产小视频在线观看| 一区二区激情| 在线不卡视频| 欧美一区国产一区| 久久久人成影片一区二区三区| 国产在线播放一区二区三区| 国产精品日韩在线| 免费不卡中文字幕视频| 欧美凹凸一区二区三区视频| 欧美日韩精品一区二区在线播放| 午夜影视日本亚洲欧洲精品| 另类尿喷潮videofree| 久久精品在线观看| 中文av一区特黄| 久久精品二区亚洲w码| 麻豆精品视频在线观看视频| 国产精品夫妻自拍| 国产精品mv在线观看| 欧美日韩成人在线播放| 亚洲人成毛片在线播放女女| 黑人巨大精品欧美一区二区小视频| 亚洲精品美女在线观看| 在线 亚洲欧美在线综合一区| 亚洲专区国产精品| 久久av一区二区三区| 欧美成人按摩| 在线观看日韩精品| 久久频这里精品99香蕉| 国产精品大片wwwwww| 欧美一级久久久| 亚洲人精品午夜在线观看| 亚洲婷婷综合色高清在线| 欧美国产综合| 欧美日韩久久久久久| 国产日韩一级二级三级| 亚洲愉拍自拍另类高清精品| 亚洲国产一成人久久精品| 亚洲视频在线观看免费| 国产一区二区无遮挡| 中国av一区| 一本一本久久a久久精品综合麻豆| 亚洲精品国产系列| 国产一区二区精品丝袜| 欧美日韩国产一中文字不卡| 欧美交受高潮1| 国产毛片精品国产一区二区三区| 亚洲欧洲精品一区二区三区波多野1战4| 国产精品av久久久久久麻豆网| 免费h精品视频在线播放| 欧美午夜国产| 免费在线观看一区二区| 欧美日韩一二三区| 国产精品家庭影院| 国产欧美一区二区视频| 在线精品视频一区二区| 欧美日韩一区不卡| 欧美在线免费播放| 国产精品一区二区在线观看| 免费美女久久99| 国产精品a久久久久| 欧美女激情福利| 免费成人毛片| 久久久99国产精品免费| 欧美日韩亚洲系列| 一区二区三区国产精华| 国产精品videosex极品| 欧美大片专区| 欧美日韩精品| 亚洲久久一区| 午夜精品免费视频| 久久免费午夜影院| 亚洲精品日韩欧美| 激情欧美一区| 在线观看成人小视频| 欧美精品色网| 亚洲一区二区三区免费在线观看| 亚洲国产一区二区三区a毛片| 久久国产精品99精品国产| 翔田千里一区二区| 国产视频一区在线|