日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

BEE1038代做、代寫Python設計程序

時間:2024-03-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Assignment [100 marks, weight: 30%]
BEE1038: Introduction to Data Science in Economics
Assignment Deadline: Thursday 28th March at 15:00 (GMT)
In this assignment, you will demonstrate your understanding and mastery of programming in
Python using data science tools.
What you will have learnt by the end of Week 6/7 should cover almost everything you will need,
and what you learnt is already enough to start working on some problems. If you are stuck then
read through the notebooks again. If you are still unsure, then have a look online. Google and
Stack OverFlow are your friends!
The grade of this assignment contributes 30% towards your overall grade in the course. The
following aspects need to be shown:
● Basic Python code and functions
● Manipulation and calculations on NumPy arrays and Pandas data frame
● Preparing and preprocessing data.
● Doing a basic plot, and changing plot markers, colors, etc.
● Improving and extending analysis.
● Ability to elaborate on your approach and explain your rationale when completing the
assignment.
Your submission will be a compressed file (.zip) containing the following files:
1. A copy of your Python script named your_name_solution.ipynb (done in Jupyter
Notebook). For example, my notebook file will be named cecilia_chen_solution.ipynb.
2. Same copy printed as a PDF, your_name_solution_code.pdf. Take a look at this link for
instruction on exporting Jupyter Notebok as PDF.
3. Three .png images of your final plots: one that replicates the plot in Problem 4 (p4.png),
one that replicates the plots in Problem 5 (H) (p5h.png), and those that show any
additional analysis in Problem 6 (p6a.png, etc.).
You must explain your approach and rationale using the markdown and/or comments in code.
Any block code or results without appropriate explanation will be panelized. Your scripts must
be sufficient to reproduce your answers to all questions and plots. You are responsible for
making sure that your Jupyter Notebook file will open without errors. Submissions that do not
open may receive a zero.
Collaboration & Misconduct: You are encouraged to think about this assignment in groups or ask
each other for help. If you do, you should do the following: 1) write your own code (no code
copying from others), 2) Report the names of all people that you worked with in your submission,
3) if you received help from someone, write that explicitly, 4) plagiarism of code or writeup will
not be tolerated; do not copy blocks of code in your answers, and 5) do not post your solutions
online (even after the release of your marks). For those who want to evidence your experience
to recruiters, make sure you share a private link to your project/work (or undiscoverable link). If
we can find your answers online anytime until September this year, you will be reported for
misconduct.
The University takes poor academic practice and academic misconduct very seriously and expects
all students to behave in a manner which upholds the principles of academic honesty. Please
make sure you familiarize yourself with the general guidelines and rules from this link1 and this
link2
.
Problem 1 [15 marks]
Write a function that accepts a number n as an input, and it returns n rows that look like the
following pattern. Run your function for n = 21 (the output below is for n=12 and n = 21).
1 http://as.exeter.ac.uk/academic-policy-standards/tqa-manual/aph/managingacademicmisconduct/
2
https://vle.exeter.ac.uk/pluginfile.php/1794/course/section/2**99/A%20Guide%20to%20Citing%2C%20Referencing
%20and%20Avoiding%20Plagiarism%20V.2.0%202014.pdf
 Output when n = 12 output when n = 21
Problem 2 [15 marks]
Solve all the following questions.
A. Write a function that you will call min_distance() that takes as input a list of integers and
returns the minimum (absolute) difference between any two numbers in that list.
For example, min_distance([5,9,1,3]) should return 2
While, min_distance([3,4,1,1]) should return 0
B. Using the min_distance() function you have created, create another function
max_min_distance() that takes a list of lists of integers as an input, and it returns the
maximum value among all the minimum distance values calculated on the inner-lists
(output of min_distance() for each inner-list).
For example, max_min_distance([[5,9,1,3],[3,4,1,1]]) should return 2
C. Demonstrate that your max_min_distance() function works well on the following input:
[[5,2,1,6],[10,0,4],[9,18,1],[100,100,27,9,18],[28,30]]
D. Set the NumPy random seed to 99 (Use the random generator method:
numpy.random.default_rng(seed)). Generate a **dimensional NumPy array of size 1000
consisting of random integers between 0 and 3000 (both included). Reshape this array
into a 2-dimensional array of 50 rows (i.e., 50x20). Test your function on this input.
E. Use the %timeit function to calculate the time for your max_min_distance() algorithm to
run on the input from D.
Problem 3 [20 marks]
A. Set the NumPy random seed to 120.
B. Create a 3x20x5 array (3 depths, 20 rows, 5 columns) of random integers between
-20 and 100 (both included) and print it.
C. For this part, consider the first depth of the array (i.e., first dimension is 0). Print the
number of elements that are strictly more than 60 in each column (of the first depth).
D. For this part, consider the third depth of the array (i.e., first dimension is 2). Print the
number of rows (of the third depth) that contain any positive values.
Problem 4 [20 marks]
In this problem, you need to reproduce the plot shown below, as accurately as possible, from
scratch. First, you will need to generate your x-axis data, and calculate the two series of your yaxis data using the simple functions shown in the legend.
Problem 5 [20 marks]
In this problem, you will use a dataset called harrypotter_dataset. Please follow the instructions
below for your data analysis.
A. Load the harrypotter_dataset.csv file in your notebook, and print the dataset. Print the
number of rows.
B. Print the column headings of the data set.
C. You will notice that column headings have an unnecessary leading space (e.g., “ Book
index”. Write a code to remove the leading space from every column name in the dataset,
replace the space between the column name with _, and convert all the column headings
to lower case. Save changes to your data frame. Re-run code in B to make sure it is solved
now. For example, the original column name is “ Book index”. It should be “book_index”
at the end.
D. Create a new column: ‘runtime_in_hours’ using the column ‘Runtime (in minutes)’. The
new column should have floating numbers (e.g., 150 minutes à 2.5 hours).
E. Create a new column: ‘is_same_date_uk_us’: boolean (True : “UK Movie release date” is
the same as “US Movie release date”, False : otherwise)
F. Calculate the following:
a. Suppose you chose to read one chapter from one of the books at random. What
is the probability that this chapter belongs to Book number 7? (hint: write a code
that divides the number of chapters in Book number 7 by the total number of
chapters)
b. Suppose you chose to watch one minute of one of the movies at random. What is
the probability that it belongs to one of the following movies 1st, 3rd, 5th, or 7th ?
c. What is the percentage of the movies that were released on the same date in both
the UK and the US?
G. Create a new data frame, df_nineties, which contains data (all columns) for books
released before 2000 i.e., ‘Book release year’ is strictly smaller than 2000.
H. Reproduce the following plot: you will get marks for reproducing the plot as accurately as
possible, taking into consideration the steps undertaken to reach the final figure.
Problem 6 [10 marks]
For this problem, use the same data from Problem 5 to perform compelling extra analysis.
Perhaps make use of the other columns in the harrypotter_dataset data set. You will get marks
if you find a compelling and interesting visualisation (one plot is enough, but you may produce
as many as you want if they are all tied into one main idea). Make sure you provide textual
description and/or analysis of the plot. You can also collect additional data to compliment your
analyses. For instance, you can add new columns to the dataset such as a cast list. Please be sure
to write down the source of your additional data collected.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:越南投資簽證年限(如何申請越南投資簽證)
  • 下一篇:ENGG1330代做、Python程序設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        日韩一区二区精品在线观看| 久久xxxx| 亚洲第一精品久久忘忧草社区| 亚洲福利视频一区二区| 在线精品国精品国产尤物884a| 久久久久久久久久久一区| 亚洲一区三区电影在线观看| 亚洲一本大道在线| 国产一区在线免费观看| 亚洲高清视频一区| 欧美三级在线播放| 国产一区成人| 一区二区在线视频| 欧美大片专区| 欧美国产专区| 亚洲国产欧美国产综合一区| 久久性色av| 欧美日韩在线观看视频| 欧美女主播在线| 欧美成人日本| 亚洲第一黄网| 亚洲国产裸拍裸体视频在线观看乱了中文| 亚洲激情国产| 国产亚洲电影| 亚洲国产第一| 国产女主播在线一区二区| 欧美视频一区二区三区在线观看| 在线综合欧美| 欧美一区国产二区| 国外成人性视频| 狠狠综合久久av一区二区小说| 欧美日韩一区二区在线播放| 国产精品麻豆成人av电影艾秋| 欧美日韩国产成人| 国产综合婷婷| 欧美理论大片| 久久狠狠一本精品综合网| 国产精品videosex极品| 免费成人高清视频| 欧美另类一区二区三区| 久久久久久久高潮| 欧美激情女人20p| 亚洲精品护士| 欧美午夜理伦三级在线观看| 久久夜色精品国产亚洲aⅴ| 欧美视频不卡| 欧美三级中文字幕在线观看| 国模大胆一区二区三区| 亚洲欧美欧美一区二区三区| 宅男噜噜噜66国产日韩在线观看| 亚洲午夜一区二区三区| 欧美日韩国产综合视频在线观看中文| 亚洲第一在线视频| 欧美日韩在线免费视频| 久久av一区二区三区亚洲| 国产日产精品一区二区三区四区的观看方式| 牛夜精品久久久久久久99黑人| 久久成人免费电影| 亚洲欧洲日本国产| 亚洲婷婷综合色高清在线| 国产精品专区h在线观看| 欧美激情第3页| 国外成人在线视频| 亚洲无线视频| 久久视频国产精品免费视频在线| 久久本道综合色狠狠五月| 亚洲美女av在线播放| 亚洲精品日产精品乱码不卡| 亚洲人成精品久久久久| 香蕉久久夜色| 欧美在线视频a| 国产精品日日摸夜夜摸av| 国产真实乱子伦精品视频| 午夜激情久久久| 99国产欧美久久久精品| 影音先锋久久资源网| 欧美激情在线有限公司| 欧美无乱码久久久免费午夜一区| 欧美激情综合色综合啪啪| 午夜久久久久| 欧美激情精品久久久久久变态| 国产视频观看一区| 99国产精品国产精品毛片| 一区二区三区视频在线观看| 欧美sm极限捆绑bd| 在线电影院国产精品| 欧美三级视频| 国内精品国产成人| 性欧美暴力猛交另类hd| 午夜精品久久一牛影视| 亚洲乱码国产乱码精品精天堂| 久久精品国产99| 亚洲国产精品久久久久久女王| 免费中文字幕日韩欧美| 国产精品综合久久久| 亚洲一区精品电影| 国产亚洲美州欧州综合国| 一本色道婷婷久久欧美| 国产嫩草一区二区三区在线观看| 国产精品久久久久9999吃药| 亚洲精品一区二区三区不| 亚洲区免费影片| 亚洲一区黄色| 欧美岛国激情| 亚洲专区在线| 午夜亚洲福利| 国产精品美女www爽爽爽| 欧美高清视频在线观看| 国产精品夜夜夜| 亚洲欧洲一区| 欧美激情综合色| 久久高清国产| 欧美视频一区二区三区在线观看| 巨胸喷奶水www久久久免费动漫| 欧美午夜精彩| 狠狠狠色丁香婷婷综合激情| 久久久亚洲高清| 午夜在线不卡| 欧美精品首页| 在线亚洲一区| 亚洲电影第三页| 久久久久www| 国产精品免费区二区三区观看| 欧美激情一二三区| 国产精品久久久久永久免费观看| 欧美一区二区三区在线观看视频| 欧美日韩国产亚洲一区| 黄色一区二区在线观看| 中国成人在线视频| 国产精品萝li| 亚洲自拍偷拍视频| 国产精品高精视频免费| 国产精品免费一区二区三区观看| 亚洲精品永久免费| 一本色道久久综合亚洲精品按摩| 欧美在线观看视频一区二区| 欧美日韩一区二区在线播放| 国产日韩在线播放| 久久精品成人欧美大片古装| 亚洲人成网在线播放| 欧美午夜一区| 欧美华人在线视频| 欧美永久精品| 久久夜色精品国产噜噜av| 99国产一区二区三精品乱码| 久久久一二三| 欧美视频第二页| 欧美系列电影免费观看| 亚洲成人资源| 国产精品v日韩精品| 亚洲欧美韩国| 美女精品一区| 欧美国产高清| 在线成人激情黄色| 久久久www| 免费日韩精品中文字幕视频在线| 久久亚洲精品一区二区| 欧美性色aⅴ视频一区日韩精品| 久久精品国产999大香线蕉| 性欧美video另类hd性玩具| 亚洲一区二区三区成人在线视频精品| 欧美理论电影网| 亚洲自拍偷拍色片视频| 久久综合久久综合九色|