<em id="rw4ev"></em>

      <tr id="rw4ev"></tr>

      <nav id="rw4ev"></nav>
      <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
      合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

      CS 3800 代做、代寫 Python ,java 程序設計

      時間:2024-03-18  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



      CS 3800-Online W. Schnyder
      Spring 2024 3/6/2024
      Homework 7 (due Friday, March 15)
      Instructions: This homework is to be submitted on GradeScope as a single pdf (not in parts) by 11:59 pm on the due date. You may either type your solutions in a word processor and print to a pdf, or write them by hand and submit a scanned copy. Do write and submit your answers as if they were a professional report. There will be point deductions if the submission isn’t neat (is disordered, difficult to read, scanned upside down, etc. . . .).
      Begin by reviewing your class notes, the slides, and the textbook. Then do the exercises below. Show your work. An unjustified answer may receive little or no credit.
      Read: 2.3 (for Tuesday) and 3.1 (for Friday)
      1. [8 Points] Pushdown. For each of the following languages over the alphabet {a, b}, draw the state diagram of a pushdown automaton that accepts this language. For full credit, your automaton should have as few states as possible. (Below, assume that m, n ≥ 0).
      (a) {anbm | n ≤ m}. (b) {anbm | n ≥ m}.
      2. [6 Points] Pushdown. Construct a pushdown automaton P such that (assume m, n ≥ 0): L(P)={ambn |n=2m}
      Specify the components of your automaton and draw a state-diagram. For full credit, your automaton should have as few states as possible.
      3. [6 Points] Pushdown. Construct a pushdown automaton P such that (assume m, n ≥ 0): L(P)={ambn |m≤n≤2m}
      Specify the components of your automaton and draw a state-diagram. For full credit, your automaton should have as few states as possible.
      4. [15 Points] Intersection. Consider the language (n and m are natural numbers ≥ 0) L={anbm |n>mandniseven}
      Clearly L = Lcf l ∩ Lreg where
      Lcfl ={anbm |n>m}andLreg ={w∈{a,b}∗ |whasanevennumberofa’s}
      (a) Draw the state diagram of a DFA for Lreg. For full credit, your automaton should have as few states as possible.
       Page 1 of 3

      CS 3800-Online HW 7 Spring 2024
      (b) Draw the state diagram of a PDA for Lcfl. For full credit, your automaton should
      have as few states as possible.
      (c) Apply the algorithm from class (lecture 15d) to construct a PDA for L. Draw the state diagram of your automaton. (Do not delete useless states, this problem only asks you to demonstrate your understanding of the algorithm.)
      5. [8 Points] Closure properties. In this problem, you are not allowed to construct gram- mars or automata. Everything can be shown using closure properties. Throughout, the reference alphabet is Σ = {a,b} and N denotes the natural numbers (including 0); and n, m ∈ N.
      (a) In Problem 1, you showed that the languages
      {anbm |n≤m} and {anbm |n≥m}
      are context-free. Use this fact to give very simple proofs that {anbm |n<m} and {anbm |n>m}
      are context-free.
      (b) Prove that the language
      {a,b}∗ −{anbn |n∈N}
      6. [6 Points] Closure Properties. Suppose that L is context-free and R is regular.
      (a) Is L − R necessarily context-free? Justify your answer. (b) Is R − L necessarily context free? Justify your answer.
      7. [5 Points] Pumping Lemma. Prove the following variant of the Pumping Lemma:
      For each context-free language L there exists a pumping length p ≥ 0 such that each word
      w with w ∈ L and |w| ≥ p can be written as w=uvxyz
      such that
      i. |vxy|≤p ii. v̸=ε
      iii. uvnxynz∈Lforalln≥0
      Your proof should be simple and succint. References to problem 2.37 in the textbook will not be accepted.
      is context-free.
      Page 2 of 3

      CS 3800-Online HW 7 Spring 2024
      8. [9 Points] Pumping Lemma. This problem leads you step-by-step through a Pumping Lemma based proof (the next problems will not indicate the steps). You will show that the language
      L={anb2nck |n>k≥0}
      (a) Suppose (for contradiction) that L is context free. Then it has a pumping length
      is not context free.
      p≥1. Whyisp≥1?
      (b) Every word w ∈ L with length |w| ≥ p can be written as w = uvxyz with three properties. What are these three properties?
      Select the word w = apb2pcp−1
      (c) Derive a contradiction in case v begins with a. (d) Derive a contradiction in case v begins with b. (e) Derive a contradiction in case v begins with c.
      (f) Use problem 7 to explain that the above proof is complete.
      9. [8 Points] Pumping Lemma. In this problem, you will show that the language
      L = {www | w ∈ {a,b,c}∗}
      (a) Use the pumping Lemma to show that the language {anbanbanb | n ≥ 1} is not
      is not context-free. context free.
      (b) Use closure properties of CFLs to conclude that L is not context-free. (Don’t give a direct proof.)
      10. [0 Point] Do not submit. Exercise 2.6(ac) page 155. The solution is in the book page 160, this is for practice only.
      11. [0 Point] Do not submit. Exercise 2.7(ad) page 155. The solution is in the book pages 160, this is for practice only.
      12. [0 Point] Do not submit. Exercise 2.8 page 155. The solution is in the book page 161, this is for practice only.
      13. [0 Point] Do not submit. Problem 2.18 page 156. The solution was covered in lecture and is also in the book page 161, this is for practice only.
      請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

      掃一掃在手機打開當前頁
    1. 上一篇:代做RISC-V、代寫 C++編程語言
    2. 下一篇:代寫CS5002、代做 java 設計程序
    3. 無相關信息
      合肥生活資訊

      合肥圖文信息
      出評 開團工具
      出評 開團工具
      挖掘機濾芯提升發動機性能
      挖掘機濾芯提升發動機性能
      戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
      戴納斯帝壁掛爐全國售后服務電話24小時官網
      菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
      菲斯曼壁掛爐全國統一400售后維修服務電話2
      美的熱水器售后服務技術咨詢電話全國24小時客服熱線
      美的熱水器售后服務技術咨詢電話全國24小時
      海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
      海信羅馬假日洗衣機亮相AWE 復古美學與現代
      合肥機場巴士4號線
      合肥機場巴士4號線
      合肥機場巴士3號線
      合肥機場巴士3號線
    4. 上海廠房出租 短信驗證碼 酒店vi設計

      成人久久18免费网站入口