日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MLDS 421: Data Mining

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Individual Assignment (100 points)

Instructions:

• Submit the paper review as a word or pdf file.

• Submit code as a Python notebook (.ipynb) file along with the HTML version.

• Write elegant code with substantial comments. If you have referred to or reused code from a website add the links as reference.

1. Paper Review – Following the guidelines review any one of the technical papers from Group2 (20)

2. Generate random multidimensional (n=1000, D >= 15) data using sklearn. (20)

• Build a K-means function from scratch (without using sklearn) and make assumptions to simplify the code as needed.

• Use the elbow method to find an appropriate value for k

• Use the silhouette plot to evaluate your clusters

• Re-cluster the data to see if you can improve your results

• Perform PCA on the original dataset and retain the most important PCs.

• Run K-means on the PCA output, compare results with respect to cluster quality and time taken

3. Using the data from 2, perform hyperparameter optimizations of the following clustering algorithms. (20)

• Agglomerative hierarchical clustering (number of clusters, linkage criterion)

• Density-based clustering (DBSCAN) (eps, minPts)

• Model-based clustering (GMM) (number of clusters)

4. Data mining and Cluster analysis of the following dataset (40)

https://data.cdc.gov/NCHS/NCHS-Injury-Mortality-United-States/vc9m-u7tv/about_data

The dataset contains the number of injury deaths per year by different injury intents from years 1999 to 2016 in the US. There are different groupings by age group, gender, race, and injury intent.

As a data science consultant, your goal is to mine the dataset and extract meaningful insights for your clients in the health care industry. The course of action is as follows:

• Review and understand the structure of the data.

o Columns are year, sex, age group, race, injury mechanism, injury intent, deaths, population, age specific rate, and the statistics of age specific rate

• Data Transformation

o For each year, group by age group, sex, or race and summarize data as needed for subsequent analysis.

• Exploratory Data Analysis (10)

o Create statistical summaries.

o Create boxplots, correlation/pairwise plots.

o Perform basic outlier analysis.

• Clustering (15)

o In a few lines create a plan that describes the 3-4 questions that are suitable for cluster analysis.

o List the various clustering algorithm(s) you’d use and why:

o E.g., K-means, K-medians, K-modes, Hierarchical methods, DBSCAN, etc.

o Apply the above algorithms to the filtered dataset based on your plan.

o Report on the quality of the clusters, pros/cons, and summarize your findings.

• Bias/Fairness Questions (15)

Data

o In the dataset under study, from a bias/fairness (b/f) perspective, there are 2 sensitive features: race and gender.

o Analyze the data by a combination (2) of features (sensitive and other). Example features to include in the analysis: location (county, state), and other features you consider relevant. Though these features may not be considered sensitive they can be a proxy for sensitive features.

o Determine feature groupings that are relevant for your analysis and explain your choices.

o Do you detect bias in the data?

o Present the results visually to show salient insights with respect to bias.

o Based on the EDA and your project objective, develop a hypothesis about where b/f issues could arise in the modeling (cluster analysis).

Modeling

o Based on your hypothesis, assess the fairness of your model/analysis by applying the fairness-related metrics that are available in any of the following tools: Python Fairlearn package, R Fairness/Fairmodels package, or other similar tools.

o Explain the reasoning for the groups that you selected for the fairness metrics.

o Compare the fairness metrics for the different groups.

o If you developed multiple models compare the fairness metrics for the models.

o Comment on the results.

o Suggest how the bias/fairness issues could be mitigated.

o Present the results visually to show salient insights.

Note: In the Fall Quarter you attended lectures on Bias/Fairness. Additionally, the following is a useful resource for analyzing b/f in data and modeling: Fairness & Bias Metrics
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫 Behavioural Economics ECON3124
  • 下一篇:代寫COMP1721、代做java程序設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美一级大片在线观看| 黄色欧美日韩| 国内精品国语自产拍在线观看| 亚洲在线不卡| 亚洲毛片一区二区| 国产主播在线一区| 国产日韩欧美综合精品| 久久久91精品国产一区二区精品| 蘑菇福利视频一区播放| 亚洲国产精品尤物yw在线观看| 欧美日韩亚洲系列| 国产精品视频99| 欧美色另类天堂2015| 一区免费在线| 亚洲最黄网站| 亚洲激情不卡| 国产精品黄页免费高清在线观看| 欧美视频在线看| 国产精品电影观看| 亚洲国产一区二区精品专区| 亚洲精品欧美极品| 在线电影一区| 国产精品视频久久一区| 亚洲乱码国产乱码精品精98午夜| av不卡免费看| 亚洲综合好骚| 亚洲精品一区二区在线| 久久久久一本一区二区青青蜜月| 欧美精品乱码久久久久久按摩| 国产精品欧美日韩久久| 正在播放日韩| 国产欧美日韩亚洲| 欧美系列电影免费观看| 国产精品v欧美精品v日韩| 99综合在线| 激情成人av在线| 亚洲天堂av高清| 久久久久九九视频| 亚洲电影在线播放| 亚洲一区3d动漫同人无遮挡| 国产精品一国产精品k频道56| 亚洲天堂激情| 老色鬼精品视频在线观看播放| 亚洲天堂第二页| 亚洲欧美日韩直播| 欧美精品久久久久久久免费观看| 国内在线观看一区二区三区| 午夜精品久久一牛影视| 国产精品久久久久久一区二区三区| 国产精品婷婷午夜在线观看| 欧美日本亚洲| 亚洲天堂av在线免费| 黄色成人在线网站| 久久久久久9999| 欧美日韩视频在线观看一区二区三区| 香蕉成人伊视频在线观看| 亚洲人成在线观看| 91久久精品www人人做人人爽| 亚洲成色777777在线观看影院| 免费观看成人网| 99精品99久久久久久宅男| 亚洲三级电影全部在线观看高清| 久久嫩草精品久久久久| 亚洲国产精品va在线看黑人动漫| 欧美成人dvd在线视频| 欧美a一区二区| 国产欧美精品日韩区二区麻豆天美| 亚洲国产精品久久91精品| 在线亚洲欧美视频| 午夜精品久久久久久久白皮肤| 欧美在线免费视频| 欧美日韩日本国产亚洲在线| 日韩视频在线免费| 亚洲午夜精品17c| 在线视频国产日韩| 激情久久中文字幕| 黄色精品一区| 狠狠狠色丁香婷婷综合久久五月| 免费观看在线综合| 欧美日韩亚洲不卡| 国产真实精品久久二三区| 亚洲欧美在线一区| 亚洲国产精品久久久久| 日韩视频不卡| 一本一本久久a久久精品综合麻豆| 欧美一区二区视频97| 欧美性大战久久久久久久蜜臀| 亚洲精品少妇30p| 欧美日韩一区二区在线观看| 国产精品一区二区三区乱码| 欧美在线视频网站| 亚洲高清成人| 亚洲韩国一区二区三区| 一区精品在线播放| 国产精品热久久久久夜色精品三区| 国产欧美日韩三区| 欧美激情在线有限公司| 亚洲国产精品精华液网站| 国产精品人成在线观看免费| 久久精品国产亚洲一区二区三区| 亚洲午夜精品久久久久久浪潮| 亚洲男女自偷自拍图片另类| 亚洲摸下面视频| 136国产福利精品导航| 亚洲午夜免费福利视频| 亚洲国产欧美不卡在线观看| 国产欧美高清| 狼人社综合社区| 久久精品免费观看| 欧美成人69av| 在线看视频不卡| 亚洲一级黄色| 亚洲国产精品t66y| 亚洲精美视频| 亚洲日本中文字幕区| 夜夜嗨av一区二区三区网页| 日韩一级成人av| 欧美私人啪啪vps| 久久夜色精品国产亚洲aⅴ| 久久激情久久| 一区二区三区精品视频在线观看| 欧美影院久久久| 国产精品青草综合久久久久99| 久久先锋影音| 欧美精品一区在线观看| 欧美激情精品久久久久| 久久国产视频网站| 亚洲永久在线观看| 欧美日韩dvd在线观看| 欧美国产一区二区在线观看| 最新国产乱人伦偷精品免费网站| 一本不卡影院| 欧美午夜一区二区三区免费大片| 狠狠狠色丁香婷婷综合久久五月| 国产一区清纯| 亚洲欧美日韩精品| 香蕉成人啪国产精品视频综合网| 久久久久综合网| 在线播放不卡| 欧美一级久久久久久久大片| 久久国产一二区| 国产性色一区二区| 99国产精品久久久久久久久久| 国产毛片一区| 精品999在线播放| 国产中文一区二区| 国产精品最新自拍| 欧美国产综合一区二区| 国产视频在线观看一区| 久久免费国产精品1| 亚洲欧美日韩国产一区| 国产乱码精品一区二区三| 国产夜色精品一区二区av| 亚洲国产黄色片| 欧美色网一区二区| 欧美日韩一区三区| 国产精品亚洲综合天堂夜夜| 国产精品99一区| 欧美1区2区视频| 亚洲精品国产精品国自产观看| 亚洲男女自偷自拍图片另类| 欧美一区二区三区四区视频| 欧美日韩一区综合| 一区二区三区导航|