日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MLDS 421: Data Mining

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Individual Assignment (100 points)

Instructions:

• Submit the paper review as a word or pdf file.

• Submit code as a Python notebook (.ipynb) file along with the HTML version.

• Write elegant code with substantial comments. If you have referred to or reused code from a website add the links as reference.

1. Paper Review – Following the guidelines review any one of the technical papers from Group2 (20)

2. Generate random multidimensional (n=1000, D >= 15) data using sklearn. (20)

• Build a K-means function from scratch (without using sklearn) and make assumptions to simplify the code as needed.

• Use the elbow method to find an appropriate value for k

• Use the silhouette plot to evaluate your clusters

• Re-cluster the data to see if you can improve your results

• Perform PCA on the original dataset and retain the most important PCs.

• Run K-means on the PCA output, compare results with respect to cluster quality and time taken

3. Using the data from 2, perform hyperparameter optimizations of the following clustering algorithms. (20)

• Agglomerative hierarchical clustering (number of clusters, linkage criterion)

• Density-based clustering (DBSCAN) (eps, minPts)

• Model-based clustering (GMM) (number of clusters)

4. Data mining and Cluster analysis of the following dataset (40)

https://data.cdc.gov/NCHS/NCHS-Injury-Mortality-United-States/vc9m-u7tv/about_data

The dataset contains the number of injury deaths per year by different injury intents from years 1999 to 2016 in the US. There are different groupings by age group, gender, race, and injury intent.

As a data science consultant, your goal is to mine the dataset and extract meaningful insights for your clients in the health care industry. The course of action is as follows:

• Review and understand the structure of the data.

o Columns are year, sex, age group, race, injury mechanism, injury intent, deaths, population, age specific rate, and the statistics of age specific rate

• Data Transformation

o For each year, group by age group, sex, or race and summarize data as needed for subsequent analysis.

• Exploratory Data Analysis (10)

o Create statistical summaries.

o Create boxplots, correlation/pairwise plots.

o Perform basic outlier analysis.

• Clustering (15)

o In a few lines create a plan that describes the 3-4 questions that are suitable for cluster analysis.

o List the various clustering algorithm(s) you’d use and why:

o E.g., K-means, K-medians, K-modes, Hierarchical methods, DBSCAN, etc.

o Apply the above algorithms to the filtered dataset based on your plan.

o Report on the quality of the clusters, pros/cons, and summarize your findings.

• Bias/Fairness Questions (15)

Data

o In the dataset under study, from a bias/fairness (b/f) perspective, there are 2 sensitive features: race and gender.

o Analyze the data by a combination (2) of features (sensitive and other). Example features to include in the analysis: location (county, state), and other features you consider relevant. Though these features may not be considered sensitive they can be a proxy for sensitive features.

o Determine feature groupings that are relevant for your analysis and explain your choices.

o Do you detect bias in the data?

o Present the results visually to show salient insights with respect to bias.

o Based on the EDA and your project objective, develop a hypothesis about where b/f issues could arise in the modeling (cluster analysis).

Modeling

o Based on your hypothesis, assess the fairness of your model/analysis by applying the fairness-related metrics that are available in any of the following tools: Python Fairlearn package, R Fairness/Fairmodels package, or other similar tools.

o Explain the reasoning for the groups that you selected for the fairness metrics.

o Compare the fairness metrics for the different groups.

o If you developed multiple models compare the fairness metrics for the models.

o Comment on the results.

o Suggest how the bias/fairness issues could be mitigated.

o Present the results visually to show salient insights.

Note: In the Fall Quarter you attended lectures on Bias/Fairness. Additionally, the following is a useful resource for analyzing b/f in data and modeling: Fairness & Bias Metrics
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫 Behavioural Economics ECON3124
  • 下一篇:代寫COMP1721、代做java程序設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲天堂男人| 开元免费观看欧美电视剧网站| 亚洲欧美三级伦理| 久久av资源网站| 国产精品久久久久一区二区三区共| 亚洲欧美韩国| 国产一区二区三区四区三区四| 欧美色另类天堂2015| 午夜精品久久久99热福利| 久久精品国产77777蜜臀| 国产精品亚洲片夜色在线| 国产精品久久一区二区三区| 影音欧美亚洲| 久久―日本道色综合久久| 伊人久久亚洲影院| 亚洲毛片在线| 亚洲欧美在线播放| 亚洲国产福利在线| 欧美日韩免费观看一区二区三区| 欧美色视频日本高清在线观看| 欧美成人a∨高清免费观看| 国产一区二区高清不卡| 欧美日韩中文字幕在线视频| 国产精品大片wwwwww| 国产精品v日韩精品v欧美精品网站| 亚洲免费人成在线视频观看| 另类亚洲自拍| 国产一级久久| 亚洲午夜三级在线| 国产精品视频免费在线观看| 一区二区91| 亚洲视频专区在线| 国产精品久久久久9999| 亚洲国产99| 亚洲天堂激情| 玖玖玖免费嫩草在线影院一区| 久久先锋影音| 欧美午夜a级限制福利片| 一区二区三区免费看| 性欧美videos另类喷潮| 久久久久天天天天| 国产在线拍偷自揄拍精品| 国产精品99久久久久久人| 久久一区二区三区av| 久久激五月天综合精品| 亚洲女人小视频在线观看| 欧美精品性视频| 欧美午夜片在线免费观看| 一本色道久久99精品综合| 狠狠久久亚洲欧美专区| 蜜臀av国产精品久久久久| 一本大道久久精品懂色aⅴ| 国产乱码精品| 亚洲精品免费电影| 亚洲视频久久| 国产农村妇女精品一区二区| 欧美日韩综合在线| 久久精品99| 欧美一区二区私人影院日本| 亚洲激情国产精品| 亚洲自拍16p| 国产精品夜色7777狼人| 欧美精品日韩一区| 国产亚洲毛片在线| 亚洲午夜激情| 亚洲一区精品电影| 欧美bbbxxxxx| 日韩视频免费观看高清完整版| 欧美伊久线香蕉线新在线| 99国产精品久久久久久久成人热| 国产综合av| 在线亚洲欧美| 欧美日韩视频不卡| 欧美与欧洲交xxxx免费观看| 亚洲在线播放| 亚洲第一天堂无码专区| 亚洲综合精品四区| 一区二区日本视频| 国产色综合天天综合网| 国内久久精品| 亚洲综合清纯丝袜自拍| 亚洲三级免费| 亚洲精品久久久久久一区二区| 午夜精品美女自拍福到在线| 日韩午夜高潮| 国产主播喷水一区二区| 欧美亚洲成人网| 在线播放豆国产99亚洲| 欧美在线日韩在线| 欧美伦理视频网站| 亚洲黄色av一区| 国产精品久久久久久影院8一贰佰| 国产精品女人久久久久久| 国内精品视频在线播放| 欧美日韩和欧美的一区二区| 正在播放欧美视频| 欧美风情在线观看| 亚洲欧美99| 欧美激情成人在线视频| 亚洲国产综合在线| 欧美日韩中文字幕综合视频| 激情成人中文字幕| 国产日本欧洲亚洲| 亚洲国产91| 麻豆国产精品777777在线| 欧美日韩成人在线视频| 欧美激情精品久久久久久蜜臀| 狠狠色狠狠色综合日日小说| 99国产精品久久久久久久| 欧美日韩国产一区二区三区地区| 伊人夜夜躁av伊人久久| 欧美日韩在线看| 欧美午夜精品电影| 欧美日韩在线播放三区| 日韩午夜免费视频| 狠狠色丁香久久婷婷综合_中| 欧美国产日韩一区| 欧美高清不卡在线| 国产精品一区二区三区成人| 99视频超级精品| 欧美日韩午夜在线| 亚洲欧美国产另类| 久久精品国产清高在天天线| 欧美日韩另类在线| 国产一区二区电影在线观看| 亚洲一区二区三区免费观看| 91久久午夜| 久久久亚洲国产美女国产盗摄| 国产精品夜色7777狼人| 久久国产精品黑丝| 久久精品2019中文字幕| 久久艳片www.17c.com| 亚洲精品九九| 国产精品毛片va一区二区三区| 久久精品视频在线播放| 欧美韩日一区二区三区| 欧美高清视频一区二区三区在线观看| 亚洲福利av| 欧美午夜电影完整版| 亚洲欧美国产制服动漫| 蜜桃av噜噜一区| 久久精品午夜| 国产亚洲观看| 亚洲视频免费在线| 欧美激情日韩| 欧美视频在线观看免费网址| 精品动漫一区二区| 欧美精品成人91久久久久久久| 午夜欧美大尺度福利影院在线看| 欧美日韩午夜精品| 亚洲精品视频啊美女在线直播| 久久人人97超碰国产公开结果| 久久久人成影片一区二区三区观看| 欧美日韩国产综合网| 伊人成年综合电影网| 亚洲精选中文字幕| 欧美精品激情在线| 在线精品一区| 国产精品一区二区你懂得| 国产精品日韩精品| 亚洲激情午夜| 国产欧美日韩视频| 欧美另类人妖| 久久躁日日躁aaaaxxxx|