日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫3D printer materials estimation編程

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫Dragonfly Network Diagram Analysis
  • 下一篇:代寫UDP Client-Server application java程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        在线亚洲一区| 海角社区69精品视频| 欧美激情综合五月色丁香| 国产亚洲综合在线| 亚洲欧洲一区二区在线播放| 久久久99免费视频| 欧美第一黄网免费网站| 国产精品久久国产愉拍| 国产精品一区三区| 欧美日韩系列| 欧美精品在线免费| 一本色道久久88精品综合| 亚洲在线一区二区三区| 久久久免费精品视频| 国语自产精品视频在线看8查询8| 亚洲视频在线观看| 女女同性精品视频| 久久综合影视| 在线观看视频亚洲| 欧美日本免费一区二区三区| 欧美在线视频一区二区三区| 欧美aaaaaaaa牛牛影院| 麻豆9191精品国产| 久久国产精品第一页| 国产精品99久久99久久久二8| 国产精品v片在线观看不卡| 亚洲日本欧美在线| 亚洲一卡二卡三卡四卡五卡| 国产午夜精品理论片a级大结局| 亚洲精品乱码久久久久久久久| 国内激情久久| 欧美片网站免费| 欧美激情va永久在线播放| 亚洲国产精品成人一区二区| 亚洲午夜精品久久久久久app| 久久精品99无色码中文字幕| 136国产福利精品导航网址| 激情懂色av一区av二区av| 狠狠88综合久久久久综合网| 一区二区三区亚洲| 一区二区三区国产盗摄| 久久久久国色av免费观看性色| 136国产福利精品导航网址应用| 亚洲主播在线观看| 欧美激情精品久久久六区热门| 亚洲激情亚洲| 宅男66日本亚洲欧美视频| 亚洲欧美偷拍卡通变态| 久久偷窥视频| 国产精品视频久久久| 亚洲欧洲美洲综合色网| 精品粉嫩aⅴ一区二区三区四区| 欧美激情网友自拍| 欧美三级第一页| 国产一区二区三区奇米久涩| 国产午夜精品全部视频播放| 久久精品主播| 久久久最新网址| 亚洲欧洲在线播放| 免费成人黄色av| 国产麻豆精品久久一二三| 国产在线国偷精品产拍免费yy| 亚洲成人直播| 亚洲国产成人精品视频| 国内精品伊人久久久久av一坑| 国产精品初高中精品久久| 欧美日韩午夜视频在线观看| 亚洲国产成人tv| 欧美日韩高清在线一区| 亚洲精品一区二区三区四区高清| 国产欧美日韩专区发布| 亚洲欧美日韩另类精品一区二区三区| 亚洲电影视频在线| 日韩午夜高潮| 免费不卡在线观看| 国产精品久久国产愉拍| 有坂深雪在线一区| 久久只有精品| 亚洲福利视频免费观看| 欧美超级免费视 在线| 欧美日本不卡高清| 91久久中文| 一区二区不卡在线视频 午夜欧美不卡在| 久久在精品线影院精品国产| 欧美在线看片| 亚洲激情精品| 欧美黄色大片网站| 久久激情综合网| 欧美日韩一区二区国产| 欧美日韩亚洲一区三区| 欧美一区二区三区成人| 欧美手机在线| 一区二区三区在线高清| 国产精品高潮呻吟久久av黑人| 欧美专区亚洲专区| 亚洲欧洲中文日韩久久av乱码| 久久综合亚洲社区| 久久影视三级福利片| 国产精品久久久爽爽爽麻豆色哟哟| 国产视频在线一区二区| 欧美黑人一区二区三区| 美国十次成人| 欧美在线免费播放| 欧美大片免费观看在线观看网站推荐| 一区二区三区国产| 国产资源精品在线观看| 亚洲一区国产一区| 亚洲狠狠婷婷| 亚洲人精品午夜在线观看| 国产精品午夜在线观看| 欧美日韩免费一区二区三区视频| 欧美一区二区三区视频免费| 欧美精品成人一区二区在线观看| 性欧美xxxx视频在线观看| 在线不卡中文字幕| 亚洲裸体在线观看| 国产精品国产一区二区| 亚洲精品日韩激情在线电影| 国产精品资源在线观看| 激情综合电影网| 国产精品久久久久91| 国产精品久久77777| 欧美精品国产| 亚洲一区视频在线观看视频| 在线观看欧美精品| 国产精品无人区| 日韩一区二区精品葵司在线| 99在线视频精品| 久久国产精品久久精品国产| 国产一区视频观看| 亚洲片国产一区一级在线观看| 另类天堂视频在线观看| 亚洲精品欧美专区| 亚洲视频在线播放| 亚洲精品一二| 中文在线资源观看网站视频免费不卡| 国产精品美女在线观看| 欧美一区二区啪啪| 久久国产一区| 在线欧美日韩精品| 国产精品试看| 亚洲美女少妇无套啪啪呻吟| 午夜亚洲福利| 久久男人资源视频| 亚洲国产精品成人久久综合一区| 欧美一级大片在线免费观看| 亚洲第一在线综合网站| 亚洲欧美精品在线观看| 亚洲二区在线| 午夜欧美大尺度福利影院在线看| 欧美激情a∨在线视频播放| 欧美电影免费观看| 久久全球大尺度高清视频| 亚洲精品欧洲| 激情成人综合网| 欧美成人官网二区| 亚洲免费激情| 国产欧美日韩视频一区二区| 久久av在线看| 亚洲黄色三级| 国产午夜久久| 国产精品日韩欧美一区二区三区| 亚洲欧美一区二区精品久久久| 久久久久久久久综合|