日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做Spatial Networks for Locations

時間:2024-02-16  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Background
Spatial Networks for Locations
 Locations are connected via roads (we assume traders can travel in both
directions!)  These locations form a spatial network.  As traders used horses for travelling, they couldn’t travel too far!
Pottery Trade
Pottery trade was very active at that times. Each location had its own supply and demandfor pottery. The supply and demand were communicated by traders who also formed their
own networks. They also potentially communicated the prices, but in these project wewill
disregard this information.
Social Networks for Traders
Traders living in some locations know each other and exchange information about supplyand demand via postal services. These traders for a social network.
How to Represent Networks
Each network can be presented as a graph. In this project, we will focus on undirectedgraphs: both social and spatial networks can be represented as graphs:
1. Spatial networks: nodes correspond to locations, and edges —to roads betweenthem (both directions)
2. Social networks: nodes correspond to traders, and edges connect those who
know each other (communicate)
Networks/graphs can be very different!
Project Questions
1. Represent road maps and trader networks as graphs
2. Find the shortest path between any two locations (return the shortest path andthedistance)
3. (Static traders) Find the best trading options for a particular trader residing in aparticular location. Core concepts: Itineraries
Itineraries provide the basis for our spatial network. They are provided as a list of (L1,L2, distance) tuples; listed in any order. L1 and L2 are provided as strings, distance is an integer number (miles).
In the example:
>>> itineraries = [('L1', 'L2', 20), ('L2', 'L3', 10), ('L1', 'L4', 15), ('L4','L5',5), ('L4', 'L8', 20), ('L5', 'L8', 22), ('L5', 'L6', 6), ('L6', 'L7', 20)]
Supply and Demand of Goods (Pottery)
Each location has its own supply and demand in pottery: supply is provided as a positivenumber, demand — as a negative. Locations with the highest demand should be servedfirst. Assume both numbers are integers. This is provided as a dictionary (in no particular order)
>>> status = {'L1':50, 'L2':-5, 'L4':-40, 'L3':5, 'L5':5, 'L8':10, 'L6':10, 'L7':-30}Trader Locations
Traders reside in some but not all locations. Only locations where traders are present cantrade. Each location can have maximum a single trader. Traders are provided as strings.
Trader locations are provided as a dictionary (in no particular order). In the example:
>>> trader_locations = {'T1':'L1', 'T2': 'L3', 'T3':'L4', 'T4':'L8', 'T5':'L7','T6':'L5'}
Social network of Traders
Traders also form a social network. A trader only trades within their own network
(considers friends only). Traders also have access to supplies and demands in the
corresponding locations. Trader friendships are provided as a list of tuples (in no particular order):
>>> traders = [('T1','T2'), ('T2', 'T5'), ('T3', 'T1'), ('T3', 'T5'), ('T3', 'T6')]Q1
Write a function create_spatial_network(itineraries) that takes itineraries (a list of
tuples) and returns for each location its neighbors and distances to them. A location is
considered to be a neighbour of another location if it can be reached by a single road (oneedge).
Input:
**3; itineraries: a list of tuples, where each tuple is of the
form (location1, location2, distance). location1 and location2 are the stringlabels for these locations and distance is an integer. Your function should return a list of tuples, where each tuple is of the
form (location, neighbours). neighbours should be of the
form [(neighbour1, distance1), (neighbour2, distance2), ...] and be sorted by their
distances (in the increasing order). If two or more neighbors have the same distance tothe location, tie-break by alphanumeric order on their labels. Note that in addition to the neighbors, the overall list has to be sorted. You may assume: **3; Distances are non-negative integer values
**3; Inputs are correctly formatted data structures and types
**3; There are no duplicate entries itineraries, and in each neighbor pair only appear
once (i.e. no [('L1', 'L2', 20), ('L2', 'L1', 20)])
Here is a diagram of an example network:
For the network above, this would be a possible itineraries and the function should
return the following:
>>> itineraries = [('L1', 'L2', 20), ('L2', 'L3', 10), ('L1', 'L4', 15), ('L4','L5',5), ('L4', 'L8', 20), ('L5', 'L8', 22), ('L5', 'L6', 6), ('L6', 'L7', 20)]
>>> create_spatial_network(itineraries)
[('L1', [('L4', 15), ('L2', 20)]), ('L2', [('L3', 10), ('L1', 20)]), ('L3', [('L2',10)]),('L4', [('L5', 5), ('L1', 15), ('L8', 20)]), ('L5', [('L4', 5), ('L6', 6), ('L8', 22)]),('L6', [('L5', 6), ('L7', 20)]), ('L7', [('L6', 20)]), ('L8', [('L4', 20), ('L5', 22)])]A different example (not pictured):
>>> itineraries = [('L4', 'L1', 2), ('L3', 'L1', 5), ('L1', 'L5', 5), ('L2', 'L5',1)]>>> create_spatial_network(itineraries)
[('L1', [('L4', 2), ('L3', 5), ('L5', 5)]), ('L2', [('L5', 1)]), ('L3', [('L1',5)]),('L4', [('L1', 2)]), ('L5', [('L2', 1), ('L1', 5)])]
Q2
Write a function sort_demand_supply(status) that takes a dictionary of demands andsupplies and returns the information as a list of tuples sorted by the value so that locationswith greatest demands (the most negative number) are provided first.
Input: **3; status: a dictionary of demands and supplies. The keys are the location labels
(strings) and the values are integers, where a positive value represents supply
and a negative value represents demand. Your function should return a list of tuples, where each tuple is of the
form (location, demand_supply), and the list should be sorted in ascending order by
their demand_supply (i.e. greatest demand to greatest supply). If two or more locationshave the same demand or supply, tie-break by alphanumeric order on their labels. You may assume: **3; Inputs are correctly formatted data structures and types
>>> status = {'L1':50, 'L2':-5, 'L4':-40, 'L3':5, 'L5':5, 'L8':10, 'L6':10, 'L7':-30}>>> sort_demand_supply(status)
[('L4', -40), ('L7', -30), ('L2', -5), ('L3', 5), ('L5', 5), ('L6', 10), ('L8',10),('L1', 50)]
Another example:
>>> status = {'L1':30, 'L2':-20, 'L4':100, 'L3':-50, 'L5':-60}
>>> sort_demand_supply(status)
[('L5', -60), ('L3', -50), ('L2', -20), ('L1', 30), ('L4', 100)]
Q3
Write a function create_social_network(traders) that takes traders, a list of tuples
specifing trader connections (edges in the trader social network) and returns a list
containing (trader, direct_connections) for each trader in traders.
Input: **3; traders: a list of tuples specifing trader connections (edges in the trader social
network). Each tuple is of the
form (trader1, trader2) where trader1 and trader2 are string names of
each trader.
Your function should return list of tuples in alphanumeric order of trader name, where
each tuple is of the form (trader, direct_connections), and direct_connections is analphanumerically sorted list of that trader's direct connections (i.e. there exists an edgebetween them in the trader social network). You may assume: **3; Inputs are correctly formatted data structures and types. Just like Q1a, you don't
need to guard against something like [('T1', 'T2'), ('T2', 'T1')] or duplicate
entries.
The pictured example:
>>> traders = [('T1','T2'), ('T2', 'T5'), ('T3', 'T1'), ('T3', 'T5'), ('T3', 'T6')]>>> create_social_network(traders)
[('T1', ['T2', 'T3']), ('T2', ['T1', 'T5']), ('T3', ['T1', 'T5', 'T6']), ('T5', ['T2','T3']),('T6', ['T3'])]
Another example (not pictured):
>>> traders = [('T1', 'T5'), ('T2', 'T6'), ('T3', 'T7'), ('T4', 'T8'), ('T1', 'T6'),('T2', 'T7'), ('T3', 'T8'), ('T4', 'T5'), ('T1', 'T7'), ('T2', 'T8'), ('T3', 'T5'),('T4','T6')]
>>> create_social_network(traders)
[('T1', ['T5', 'T6', 'T7']), ('T2', ['T6', 'T7', 'T8']), ('T3', ['T5', 'T7', 'T8']),('T4', ['T5', 'T6', 'T8']), ('T5', ['T1', 'T3', 'T4']), ('T6', ['T1', 'T2', 'T4']),('T7',['T1', 'T2', 'T3']), ('T8', ['T2', 'T3', 'T4'])]
Q4
Write a function shortest_path(spatial_network, source, target, max_bound) that
takes a spatial network, initial (source) location, target location and the maximumdistance(that a trader located in the initial location can travel) as its input and returns a tuple withashortest path and its total distance.
Input:  spatial_network: a list of tuples, where each tuple is of the
form (location, neighbours) and neighbours is of the
form [(neighbour1, distance1), (neighbour2, distance2), ...]. This
corresponds with the output of the function you wrote for Q1a.  source: the location label (string) of the initial location. **3; target: the location label (string) of the target location. **3; max_bound: an integer (or None) that specifies the maximum total distance that
your trader can travel. If max_bound is None then always return the path withminimum distance. Your function should return a tuple (path, total_distance), where path is a string of
each location label in the path separated by a - hyphen character, and total_distanceisthe total of the distances along the path.
If there's two paths with the same minimum total distance, choose the path with morelocations on it. If there's two paths with the same minimum total distance and they havethe same number of locations on the path then choose alphanumerically smaller pathstring.
If there is no path with a total distance within the max_bound then your function shouldreturn (None, None). You may assume:
 Inputs are correctly formatted data structures and types. **3; Distances are non-negative integer values. **3; The network is connected, so a path always exists, although it may not have atotal distance within the maximum bound.
>>> spatial_network = [('L1', [('L4', 15), ('L2', 20)]), ('L2', [('L3', 10), ('L1',20)]),('L3', [('L2', 10)]), ('L4', [('L5', 5), ('L1', 15), ('L8', 20)]), ('L5', [('L4',5),('L6', 6), ('L8', 22)]), ('L6', [('L5', 6), ('L7', 20)]), ('L7', [('L6', 20)]), ('L8',[('L4', 20), ('L5', 22)])]
>>> shortest_path(spatial_network, 'L1', 'L3', 50)
('L**L2-L3', 30)
>>> shortest_path(spatial_network, 'L1', 'L3', 0)
(None, None)
>>> shortest_path(spatial_network, 'L1', 'L3', 10)
(None, None)
>>> shortest_path(spatial_network, 'L1', 'L3', None)
('L**L2-L3', 30)
Q5
In this question you will be writing a
function trade(spatial_network, status_sorted, trader_locations, trader_network, max_dist_per_unit=3) that makes a single trade.
Input:
**3; spatial_network: a list of tuples, where each tuple is of the
form (location, neighbours) and neighbours is of the
form [(neighbour1, distance1), (neighbour2, distance2), ...]. This
corresponds with the output of the function you wrote for Q1a. **3; status_sorted: a list of tuples, where each tuple is of the
form (location, demand_supply), and the list is sorted in ascending order by
their demand_supply (i.e. greatest demand to greatest supply) with ties brokenalphanumerically on location label. This corresponds with the output of the
function you wrote for Q1b. **3; trader_locations: a dictionary of trader locations. The structure of this
is trader_name: trader_location, where
both trader_name and trader_location are strings. **3; trader_network: a list of tuples in alphanumeric order of trader name, whereeach tuple is of the form (trader, direct_connections), and direct_connections is an alphanumerically sorted list of that trader's direct
connections (i.e. there exists an edge between them in the trader social network). This corresponds with the output of the function you wrote for Q1c. **3; max_dist_per_unit: a float or integer value that represents the maximumthetrader is willing to travel per unit. This parameter should have a default of 3in your
function. Your function should return a single trade as a
tuple (supplier_location, consumer_location, amount) where supplier_locationand consumer_location are location labels (strings) and amount is a positive integer. If notrade is possible return (None, None, None).
Traders from the locations with highest demand contact their social network asking for
help. Then they choose the contacts worth travelling to, based on distance and the
amount of supply there. The trade shoud be determined as follows:
1. Find the location with the highest demand, this will be the consumer location. 2. Find the trader at the consumer location (skip this location and go back to step1if
there are no traders at this location) and consider the trader's connections. 3. A supplier location can only supply to the consumer location if their status is
positive (i.e. they have items to supply) and can supply an amount up to this value(i.e. they can't supply so much that they result in having a demand for the itemthey are supplying). 4. If a supplier location is directly neighbouring by a single road (adjacent) to theconsumer location then the distance used is the direct distance between the twolocations, even if there exists a shorter route via other locations. If the supplier andconsumer are not adjacent then the shortest_path function should be used todetermine the distance. 5. The trader will trade with the connection that has the highest amount of units tosupply, subject to meeting the max_dist_per_unit of the distance/units ratio. 6. Then if no trade is possible in this location, consider the next location. Return (None, None, None) if all locations have been considered. You may assume: **3; Inputs are correctly formatted data structures and types. **3; Distances are non-negative integer values. **3; There will be at most one trader at any particular location.
Consider the spatial and trader network in the image above. With a
default max_dist_per_unit of 3, the trader will only consider travelling maximum3 milesfor each unit (one direction), i.e. they will agree to travel 6 miles for get 2 pottery units but
not a single one.
In the example, we have 'L4' as the location with the highest demand of 40 units
(demand_supply=-40) and the trader 'T3' who resides there. 'T3''s direct connectionsare ['T1', 'T5', 'T6']. We can't trade with 'T5' because at their location ('L7') there is
also demand for the items. We compare the units able to be supplied and the distance-units ratio for each potential
supplier: **3; T1:
o location: L1
o supply max: 50
o distance: 15
o so they could supply all 40 units that are demanded at L4
o distance/units = 15/40 = 0.375
**3; T6:
o location: L5
o supply max: 5
o distance: 5
o so they could supply 5 of the units that are demanded at L4
o distance/units = 5/5 = 1.0
Since T1 has the largest amount of units able to be supplied, and the distance/units ratiois below the maximum (3), this trade goes ahead and the function would
return ('L1', 'L4', 40). >>> spatial_network = [('L1', [('L4', 15), ('L2', 20)]), ('L2', [('L3', 10), ('L1',20)]),('L3', [('L2', 10)]), ('L4', [('L5', 5), ('L1', 15), ('L8', 20)]), ('L5', [('L4',5),('L6', 6), ('L8', 22)]), ('L6', [('L5', 6), ('L7', 20)]), ('L7', [('L6', 20)]), ('L8',[('L4', 20), ('L5', 22)])]
>>> status_sorted = [('L4', -40), ('L7', -30), ('L2', -5), ('L3', 5), ('L5', 5), ('L6',10), ('L8', 10), ('L1', 50)]
>>> trader_locations = {'T1':'L1', 'T2': 'L3', 'T3':'L4', 'T4':'L8', 'T5':'L7','T6':'L5'}
>>> trader_network = [('T1', ['T2', 'T3']), ('T2', ['T1', 'T5']), ('T3', ['T1','T5','T6']), ('T5', ['T2', 'T3']),('T6', ['T3'])]
>>> trade(spatial_network, status_sorted, trader_locations, trader_network)
('L1', 'L4', 40)
More examples:
>>> spatial_network = [('L1', [('L4', 2), ('L3', 5), ('L5', 5)]), ('L2', [('L5',1)]),('L3', [('L1', 5)]), ('L4', [('L1', 2)]), ('L5', [('L2', 1), ('L1', 5)])]
>>> status = {'L1':30, 'L2':-20, 'L4':100, 'L3':-50, 'L5':-60}
>>> status_sorted = [('L5', -60), ('L3', -50), ('L2', -20), ('L1', 30), ('L4',100)]>>> trader_locations = {'T1': 'L1', 'T2': 'L2'}
>>> trader_network = [('T1', ['T2']), ('T2', ['T1'])]
>>> trade(spatial_network, status_sorted, trader_locations, trader_network)
('L1', 'L2', 20)
>>> trade(spatial_network, status_sorted, trader_locations, trader_network,
max_dist_per_unit=0.001)
(None, None, None)
Q6
In this part you'll be using the trade() function from part 3a iteratively to determine thestatus after several trades. Write a
function trade_iteratively(num_iter, spatial_network, status, trader_locations, trader_network, max_dist_per_unit=3) that takes the number of iterations to perform,
the spatial network, status dictionary, trader locations dictionary, trader network, and
maximum distance per unit and returns a tuple containing the sorted status list
after num_iter trades along with a list of trades performed.
Input: **3; num_iter: the number of iterations to perform as an integer or None if the
iteration should continue until no further trades can be made. **3; spatial_network: a list of tuples, where each tuple is of the
form (location, neighbours) and neighbours is of the
form [(neighbour1, distance1), (neighbour2, distance2), ...]. This
corresponds with the output of the function you wrote for Q1a. **3; status: a dictionary of demands and supplies. The keys are the location labels
(strings) and the values are integers, where a positive value represents supply
and a negative value represents demand. **3; trader_locations: a dictionary of trader locations. The structure of this
is trader_name: trader_location, where
both trader_name and trader_location are strings. **3; trader_network: a list of tuples in alphanumeric order of trader name, whereeach tuple is of the form (trader, direct_connections), and direct_connections is an alphanumerically sorted list of that trader's direct
connections (i.e. there exists an edge between them in the trader social network). This corresponds with the output of the function you wrote for Q1c.
**3; max_dist_per_unit: a float or integer value that represents the maximumthetrader is willing to travel per unit. This parameter should have a default of 3in your
function. At each iteration, the next trade to be performed is determined by the process in part 3a. We strongly suggest using the provided trade() function to find this trade. Your functionshould update the status dictionary at each iteration. Your function should return a tuple (final_supply_sorted, trades) containing the sorteddemand-supply status after num_iter trades along with a list of trades performed. The final_supply_sorted should be a list of tuples, where each tuple is of the
form (location, demand_supply), and the list should be sorted in ascending order by
their demand_supply (i.e. greatest demand to greatest supply). If two or more locationshave the same demand or supply, tie-break by alphanumeric order on their
labels. trades should be a list of each trade performed, where a trade is of the
form (supplier_location, consumer_location, amount) where supplier_locationandconsumer_location are location labels (strings) and amount is a positive integer. You may assume: Inputs are correctly formatted data structures and types. **3; Distances are non-negative integer values.  There will be at most one trader at any particular location.
In the example pictured, only one trade can occur:
>>> spatial_network = [('L1', [('L4', 15), ('L2', 20)]), ('L2', [('L3', 10), ('L1',20)]),('L3', [('L2', 10)]), ('L4', [('L5', 5), ('L1', 15), ('L8', 20)]), ('L5', [('L4',5),('L6', 6), ('L8', 22)]), ('L6', [('L5', 6), ('L7', 20)]), ('L7', [('L6', 20)]), ('L8',[('L4', 20), ('L5', 22)])]
>>> status = {'L1': 50, 'L2': -5, 'L4': -40, 'L3': 5, 'L5': 5, 'L8': 10, 'L6': 10,'L7':-30}
>>> trader_locations = {'T1': 'L1', 'T2': 'L3', 'T3': 'L4', 'T4': 'L8', 'T5': 'L7','T6':'L5'}
>>> trader_network = [('T1', ['T2', 'T3']), ('T2', ['T1', 'T5']), ('T3', ['T1','T5','T6']), ('T5', ['T2', 'T3']),('T6', ['T3'])]
>>> trade_iteratively(1, spatial_network, status, trader_locations, trader_network)([('L7', -30), ('L2', -5), ('L4', 0), ('L3', 5), ('L5', 5), ('L1', 10), ('L6', 10),('L8',10)], [('L1', 'L4', 40)])
>>> trade_iteratively(None, spatial_network, status, trader_locations, trader_network)([('L7', -30), ('L2', -5), ('L4', 0), ('L3', 5), ('L5', 5), ('L1', 10), ('L6', 10),('L8',10)], [('L1', 'L4', 40)])

請加QQ:99515681  郵箱:99515681@q.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECE438、代做C/C++編程語言
  • 下一篇: cs400編程代寫、A03.FirstGit程序語言代做
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲精品在线三区| 亚洲三级视频在线观看| 激情综合色综合久久综合| 亚洲精品在线观看免费| 国产曰批免费观看久久久| 国产一区白浆| 狠狠网亚洲精品| 99v久久综合狠狠综合久久| 快射av在线播放一区| 麻豆av一区二区三区| 一区二区三区欧美视频| 国产精品国产三级国产普通话蜜臀| 久久久欧美精品sm网站| 久久性天堂网| 一区二区三区在线视频观看| 国产一区视频网站| 永久555www成人免费| 性做久久久久久免费观看欧美| 亚洲欧洲一区二区在线观看| 在线日韩中文字幕| 久久成人国产| 欧美理论电影网| 国产日韩欧美在线播放| 欧美福利在线观看| 久久亚洲欧洲| 亚洲一区二区三区777| 欧美专区亚洲专区| 亚洲制服av| 国产精品成人一区二区网站软件| 欧美精品综合| 久久久久久久激情视频| 欧美日韩裸体免费视频| 国产精品日韩欧美一区二区| 欧美人成在线视频| 日韩午夜剧场| 午夜精品久久久久久久久久久久久| 国产精品久久久久久久久免费樱桃| 中国日韩欧美久久久久久久久| 中文久久乱码一区二区| 欧美性生交xxxxx久久久| 裸体女人亚洲精品一区| 免费成人av在线| 美女视频一区免费观看| 国内久久婷婷综合| 免费观看日韩| 亚洲尤物视频网| 欧美福利小视频| 亚洲精品视频免费观看| 新狼窝色av性久久久久久| 噜噜爱69成人精品| 欧美视频一区二区三区在线观看| 亚洲日本欧美在线| 欧美色图首页| 欧美久久一区| 国产情侣一区| 欧美日本精品在线| 欧美一级片久久久久久久| 麻豆成人综合网| 亚洲国产另类久久久精品极度| 欧美一区三区二区在线观看| 久久国产66| 欧美一区二区三区四区夜夜大片| 国产精品人人爽人人做我的可爱| 久久久久久一区| 亚洲高清在线视频| 国产精品色午夜在线观看| 亚洲一二区在线| 久久久精品国产免费观看同学| 欧美视频免费在线观看| 国产日韩欧美精品| 国产精品theporn| 久久久水蜜桃av免费网站| 最新国产精品拍自在线播放| 午夜精品视频在线观看| 久久精品国产99| 欧美日韩国产bt| 午夜日韩在线| 欧美日韩亚洲综合在线| 国产美女精品一区二区三区| 麻豆成人综合网| 伊人婷婷久久| 欧美在线视频在线播放完整版免费观看| 欧美精品一区二区三区蜜臀| 亚洲高清av| 亚洲级视频在线观看免费1级| 国产日韩精品一区二区三区| 久久精品免费电影| 在线观看亚洲| 欧美午夜国产| 欧美色播在线播放| 亚洲精品久久久久久下一站| 久久精品视频99| 欧美亚州韩日在线看免费版国语版| 欧美三级日韩三级国产三级| 亚洲福利国产精品| 欧美福利精品| 欧美日韩123| 欧美亚洲免费电影| 欧美大学生性色视频| 免费一级欧美在线大片| 欧美chengren| 国产亚洲免费的视频看| 国产精品毛片va一区二区三区| 欧美人与性禽动交情品| 国产精品久久久久影院亚瑟| 欧美国产激情二区三区| 国产精品一级在线| 久久―日本道色综合久久| 亚洲视频一区在线观看| 免费视频一区二区三区在线观看| 欧美电影免费观看大全| 国产一区二区在线免费观看| 欧美精品在线观看播放| 久久婷婷成人综合色| 亚洲欧美激情精品一区二区| 一本久久综合亚洲鲁鲁| 99re6热只有精品免费观看| 欧美日韩ab| 国产精品视频你懂的| 亚洲美女视频在线观看| 亚洲午夜精品视频| 国产精品激情偷乱一区二区∴| 黄色一区二区在线观看| 欧美美女福利视频| 欧美视频不卡| 一区二区三区欧美日韩| 亚洲午夜精品一区二区| 久久久青草青青国产亚洲免观| 亚洲国产三级网| 免费在线看一区| 欧美一级二区| 欧美另类在线播放| 亚洲人永久免费| 国产精品白丝av嫩草影院| 午夜在线视频一区二区区别| 国产精品人人做人人爽| 亚洲日本欧美| 欧美国产精品久久| 亚洲欧美国产日韩天堂区| 国产精品激情电影| 激情婷婷欧美| 久久成人精品| 免费观看欧美在线视频的网站| 一色屋精品视频免费看| 蘑菇福利视频一区播放| 欧美区一区二区三区| 欧美成人综合网站| 麻豆成人在线| 六月婷婷一区| 亚洲欧美春色| 欧美韩日亚洲| 亚洲一区二区三区涩| 久久大综合网| 精品动漫av| 亚洲精品视频在线观看网站| 久久裸体视频| 欧美激情精品久久久久久| 在线播放亚洲| 亚洲国产精品一区二区第一页| 亚洲国产精品第一区二区三区| 欧美亚洲成人网| 精品69视频一区二区三区| 狠狠色狠狠色综合| 国产亚洲女人久久久久毛片|