日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做MA2552、代寫Matlab編程設計

時間:2023-12-15  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


MA2552 Introduction to Computing (DLI) 2023/24

Computational Project

Aims and Intended Learning Outcomes

The aims of the Project are to describe methods for solving given computational problems, develop and test Matlab code implementing the methods, and demonstrate application

of the code to solving a specific computational problem. In this Project, you be will be required to demonstrate

• ability to investigate a topic through guided independent research, using resources

available on the internet and/or in the library;

• understanding of the researched material;

• implementation of the described methods in Matlab;

• use of the implemented methods on test examples;

• ability to present the studied topic and your computations in a written Project Report.

Plagiarism and Declaration

• This report should be your independent work. You should not seek help from other

students or provide such help to other students. All sources you used in preparing your

report should be listed in the References section at the end of your report and referred

to as necessary throughout the report.

• Your Project Report must contain the following Declaration (after the title page):

DECLARATION

All sentences or passages quoted in this Project Report from other people’s work have

been specifically acknowledged by clear and specific cross referencing to author, work and

page(s), or website link. I understand that failure to do so amounts to plagiarism and

will be considered grounds for failure in this module and the degree as a whole.

Name:

Signed: (name, if submitted electronically)

Date:

Project Report

The report should be about 6-8 pages long, written in Word or Latex. Equations should

be properly formatted and cross-referenced, if necessary. All the code should be included in

the report. Copy and paste from MATLAB Editor or Command Window and choose ‘Courier

New’ or another fixed-width font. The Report should be submitted via Blackboard in a single

file (Word document or Adobe PDF) and contain answers to the following questions:

1

MA2552 Introduction to Computing (DLI) 2023/24

Part 0: Context

Let f(x) be a periodic function. The goal of this project is to implement a numerical method

for solving the following family of ordinary differential equations (O.D.E):

an

d

nu(x)

dxn

+ an−1

d

n−1u(x)

dxn−1

+ . . . + a0u(x) = f(x), (1)

where ak, k = 0, · · · , n, are real-valued constants. The differential equation is complemented

with periodic boundary conditions:

d

ku(−π)

dxk

=

d

ku(π)

dxk

for k = 0, · · · , n − 1.

We aim to solve this problem using a trigonometric function expansion.

Part 1: Basis of trigonometric functions

Let u(x) be a periodic function with period 2π. There exist coefficients α0, α1, α2, . . ., and

β1, β2, . . . such that

u(x) = X∞

k=0

αk cos(kx) +X∞

1

βk sin(kx).

The coefficients αk and βk can be found using the following orthogonality properties:

Z π

−π

cos(kx) sin(nx) dx = 0, for any k, n

Z π

−π

cos(kx) cos(nx) dx =

ɽ**;?**0;

ɽ**;?**1;

0 if k ̸= n

π if k = n ̸= 0

2π if k = n = 0.

Z π

−π

sin(kx) sin(nx) dx =

(

0 if k ̸= n

π if k = n ̸= 0.

1. Implement a function that takes as an input two function handles f and g, and an

array x, and outputs the integral

1

π

Z π

−π

f(x)g(x) dx,

using your own implementation of the Simpson’s rule scheme. Corroborate numerically

the orthogonality properties above for different values of k and n.

2. Show that

αk =

(

1

π

R π

−π

u(x) cos(kx) dx if k ̸= 0

1

R π

−π

u(x) dx if k = 0

βk =

1

π

Z π

π

u(x) sin(kx) dx.

2

MA2552 Introduction to Computing (DLI) 2023/24

3. Using question 1 and 2, write a function that given a function handle u and an integer

m, outputs the array [α0, α1 . . . , αm, β1, . . . , βm].

4. Write a function that given an array [α0, α1 . . . , αm, β1, . . . , βm], outputs (in the form

of an array) the truncated series

um(x) := Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx), (2)

where x is a linspace array on the interval [−π, π].

5. Using the function from question 3, compute the truncated series um(x) of the following

functions:

• u(x) = sin3

(x)

• u(x) = |x|

• u(x) = (

x + π, for x ∈ [−π, 0]

x − π, for x ∈ [0, π]

,

and using question 4, plot u(x) and um(x) for different values of m.

6. Carry out a study of the error between u(x) and um(x) for ∥u(x)−um(x)∥p with p = 2

and then with p = ∞. What do you observe?

Part 2: Solving the O.D.E

Any given periodic function u(x) can be well approximated by its truncate series expansion (2) if m is large enough. Thus, to solve the ordinary differential equation (1)

one can approximate u(x) by um(x):

u(x) ≈

Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx),

Since um(x) is completely determined by its coefficients [α0, α1 . . . , αm, β1, . . . , βm],

to solve (1) numerically, one could build a system of equations for determining these

coefficients.

7. Explain why under the above approximation, the boundary conditions of (1) are automatically satisfied.

8. We have that

dum(x)

dx =

Xm

k=0

γk cos(kx) +Xm

k=1

ηk sin(kx)

Write a function that takes as input the integer m, and outputs a square matrix D that

maps the coefficients [α0, . . . , αm, β1, . . . , βm] to the coefficients [γ0, . . . , γm, η1, . . . , ηm].

3

MA2552 Introduction to Computing (DLI) 2023/24

9. Write a function that given a function handler f and the constants ak, solves the

O.D.E. (1). Note that some systems might have an infinite number of solutions. In

that case your function should be able identify such cases.

10. u(x) = cos(sin(x)) is the exact solution for f(x) = sin(x) sin(sin(x))−cos(sin(x)) (cos2

(x) + 1),

with a2 = 1, a0 = −1 and ak = 0 otherwise. Plot the p = 2 error between your numerical solution and u(x) for m = 1, 2, . . .. Use a log-scale for the y-axis. At what rate

does your numerical solution converge to the exact solution?

11. Show your numerical solution for different f(x) and different ak of your choice.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:INT3095代做、代寫Artificial Intelligence語言編程
  • 下一篇:代寫MGMT20005、代做Decision Analysis程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
    合肥機場巴士1號線
    合肥機場巴士1號線
  • 短信驗證碼 酒店vi設計 deepseek 幣安下載 AI生圖 AI寫作 aippt AI生成PPT 阿里商辦

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        久久综合色一综合色88| 久久女同互慰一区二区三区| 欧美国产日韩a欧美在线观看| 亚洲激情av| 亚洲欧洲视频| 亚洲成人原创| 国产区二精品视| 日韩视频精品在线观看| 亚洲欧洲偷拍精品| 午夜精品久久久久久久白皮肤| 久久久久久**毛片大全| 欧美精品在线观看91| 久久久www| 国产日韩欧美在线视频观看| 国产一区二区三区四区三区四| 一区二区免费在线播放| 国产视频精品免费播放| 亚洲毛片在线观看.| 亚洲一区精品在线| 男男成人高潮片免费网站| 久久午夜视频| 午夜国产不卡在线观看视频| 亚洲国产精品女人久久久| 亚洲激情偷拍| 在线观看日韩专区| 国产一区二区中文字幕免费看| 欧美三日本三级三级在线播放| 欧美成人有码| 国产片一区二区| 国产精品免费小视频| 欧美午夜女人视频在线| 一区二区在线视频观看| 欧美国产日韩在线| 国产亚洲成av人片在线观看桃| 亚洲综合第一页| 狠狠干成人综合网| 国产一本一道久久香蕉| 久久久久久久一区二区| 亚洲韩国一区二区三区| 一本色道久久88亚洲综合88| 欧美日韩成人综合| 亚洲精品国产精品国自产观看| 小嫩嫩精品导航| 亚洲视频网在线直播| 久久久综合视频| 国外成人在线视频| 免费观看30秒视频久久| 欧美日韩精品中文字幕| 久久婷婷麻豆| 欧美精品电影在线| 久久久久久综合| 欧美日韩免费在线| 亚洲天堂第二页| 久久中文字幕一区二区三区| 伊人夜夜躁av伊人久久| 在线免费观看视频一区| 国产亚洲欧美日韩一区二区| 亚洲成人在线观看视频| 欧美日本三级| 99av国产精品欲麻豆| 尤物yw午夜国产精品视频明星| 国产性猛交xxxx免费看久久| 亚洲观看高清完整版在线观看| 99亚洲伊人久久精品影院红桃| 久久久久国产精品午夜一区| 悠悠资源网久久精品| 欧美一区二区三区在线视频| 国产真实乱偷精品视频免| 亚洲国产精品久久人人爱蜜臀| 国产精品欧美日韩久久| 久久久999国产| 欧美视频国产精品| 久久久久久69| 女女同性女同一区二区三区91| 亚洲激情在线观看视频免费| 国产精品手机在线| 亚洲第一区在线观看| 一级日韩一区在线观看| 国产精品久久久久一区二区| 亚洲午夜av在线| 久久国产夜色精品鲁鲁99| 亚洲国产一区二区三区a毛片| 欧美无乱码久久久免费午夜一区| 国产精品影片在线观看| 欧美精品一区二区三区在线看午夜| 国产乱子伦一区二区三区国色天香| 欧美 日韩 国产一区二区在线视频| 午夜日韩在线| 亚洲午夜精品17c| 欧美三级中文字幕在线观看| 国产日韩精品一区观看| 欧美亚洲综合久久| 一区二区视频在线观看| 亚洲午夜激情| 亚洲精品国精品久久99热| 欧美精品一区在线发布| 欧美一级免费视频| 欧美 日韩 国产一区二区在线视频| 国产一区高清视频| 欧美日韩的一区二区| 欧美乱大交xxxxx| 亚洲欧美视频一区二区三区| 久久综合99re88久久爱| 欧美激情视频在线播放| 欧美伦理91i| 国产一区二区三区久久久久久久久| 欧美色视频日本高清在线观看| ●精品国产综合乱码久久久久| 国产亚洲精品久久飘花| 99视频有精品| 国产精品一区亚洲| 亚洲国产裸拍裸体视频在线观看乱了| 国产精品毛片一区二区三区| 在线看欧美日韩| 精品va天堂亚洲国产| 亚洲精品美女在线观看播放| 亚洲欧美日韩国产另类专区| 欧美va亚洲va国产综合| 狠狠色狠狠色综合日日小说| 欧美私人啪啪vps| 欧美一区日韩一区| 欧美日韩成人| 国产欧美日韩一区二区三区| 欧美午夜性色大片在线观看| 国产欧美一区二区白浆黑人| 久久久久一区二区| 99re6这里只有精品视频在线观看| 最新日韩在线| 久久久夜夜夜| 欧美日韩成人综合| 亚洲欧美日韩国产一区二区| 欧美日韩在线不卡| 亚洲精品视频中文字幕| 国产精品盗摄久久久| 久久精品日韩一区二区三区| 亚洲卡通欧美制服中文| 久久精品电影| 久久精品综合| 欧美日本一道本在线视频| 欧美日韩在线免费观看| 最近中文字幕日韩精品| 欧美fxxxxxx另类| 久久亚洲国产精品日日av夜夜| 亚洲每日在线| 久久午夜国产精品| 夜夜嗨av一区二区三区中文字幕| 久久久久久九九九九| 国产精品高清免费在线观看| 一区二区日韩| 亚洲国产欧美一区二区三区同亚洲| 亚洲大胆视频| 麻豆精品精品国产自在97香蕉| 亚洲欧美一区二区在线观看| 99ri日韩精品视频| 欧美福利一区| 久久免费的精品国产v∧| 影音先锋亚洲一区| 91久久国产综合久久蜜月精品| 欧美一级午夜免费电影| 亚洲一区中文| 欧美日本在线| 99视频在线观看一区三区| 欧美日韩综合在线免费观看| 影音国产精品|