日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP5930M 代做、代寫 c++,java 程序語言

時間:2023-12-11  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



School of Computing: assessment brief
   Module title
 Scientific Computation
  Module code
 COMP5930M
  Assignment title
 Coursework 2
  Assignment type and description
 Coursework assignment
  Rationale
 TBA
  Weighting
 20% of total mark
  Submission dead- line
 December 14th 2023 at 10:00
  Submission method
 Turnitin submission through Minerva
  Feedback provision
 Feedback provided on Minerva
  Learning outcomes assessed
 (i) Formulate and solve systems of nonlinear equations to solve challenging real-world problems arising from en- gineering and computational science; (ii) Implement al- gorithmic solutions to solve computational differential equation problems based on mathematical theory; (iii) Analyse computational linear algebra problems to iden- tify and implement the most efficient and scalable solu- tion algorithm to apply for large problems.
  Module lead
 Dr Toni Lassila
           1

1. Assignment guidance
Provide answers to the two exercises below. Answer both exercises.
2. Assessment tasks
Exercise 1: The Burgers’ equation models the propagation of a pres- sure wave in shock tube. It is a nonlinear partial-differential equation in one spatial dimension to find u(x, t) s.t.
∂u + u∂u = ν ∂2u, (1) ∂t ∂x ∂x2
where the boundary conditions u(a, t) = ua and u(b, t) = ub for all t, and the initial condition u(x, 0) = u0(x) need to be prescribed in order to obtain a well-posed problem. Here ν is the kinematic viscosity of the fluid. For ν = 0 we have the inviscid Burgers’ equation, and for ν > 0 we have the viscous Burgers’ equation.
(a) Applying the central difference formula to the second order deriva- tive in space, the upwind difference formula
􏰀Uk−Uk 􏰁
i−1
using implicit Euler’s method leads to the discrete formulation: Uk −Uk−1 􏰀Uk −Uk 􏰁 􏰀Uk −2Uk +Uk 􏰁
Fi(U)= i i +Uik i i−1 −ν i+1 i i−1 =0 ∆t h h2
(2) for i = 2,3,...,m−1 where the interval has been discretised with
m uniformly distributed nodes and a spatial grid size h. Implement the function F as a python subroutine fun burgers.py
        def fun_burgers( uk, ukp, dt, h, nu, ua, ub )
where uk is the vector Uk of size m, ukp is the previous time-step solution vector Uk−1, dt is the time-step ∆t, h is the spatial grid size parameter h, and nu is the kinematic viscosity ν. Include the boundary conditions ua and ub in the implementation. [6 marks]
2
Uik i
to the first order derivative in space, and discretising (1) in time
 h
   
(b) Derive the analytical formulas for the nonzero elements on row i of the Jacobian matrix for (2): [4 marks]
∂Fi , ∂Fi, ∂Fi . ∂Ui−1 ∂Ui ∂Ui+1
(c) Solve problem (2) numerically using your fun burgers.py and the PDE solver template solver burgers.py provided in the course- work folder. Use the viscosity value ν = 0.01, the time-step ∆t=0.01,thegridsizeh=0.01,andafinaltimeofT =1. The initial solution u(x, 0) should be taken as a unit step located at x = 0.1 (see below) and the boundary conditions as: u(0, t) = 1 and u(1, t) = 0.
   Figure 1: Initial condition u0(x) for the Burgers’ equation (1)
Plot the solution u(x, T ) at the final time step T = 1 and include it in your report. Also report the total number of Newton iterations required for the numerical solution (sum of Newton iterations over all time steps). [2 marks]
3

(d) The solution of Burgers’ equation (1) can be shown to be a (decay- ing) wavefront that travels from left to right at a constant velocity v. What is the approximate value of the numerical wavefront ve- locity vnum for ν = 0.01, ∆t = 0.01, and h = 0.01? Measure the approximate location of the wavefront using the point where the solution u(xmid) ≈ 0.5. [1 mark]
(e) Replace the discretisation of the nonlinear convection term with the downwind difference formula
􏰀Uk − Uk 􏰁
i (3)
and solve the problem with same parameters as in (c). Plot the solution u(x,T) at the final time step T = 1 and include it in your report. Also report the total number of Newton iterations required for the numerical solution (sum of Newton iterations over all time steps). What is the numerical wavefront velocity vnum in this case?
Now set ν = 0.001 and solve the problem again using the down- wind difference formula. What do you observe? Now solve the problem with ν = 0.001 using the original upwind difference for- mula and compare the results. What is the numerical wavefront velocity vnum in this case? [7 marks]
Uik i+1
h
 4

Exercise 2: Consider the anisotropic diffusion equation to find u(x, y) s.t.
􏰀 ∂2u ∂2u􏰁
− μx∂x2 +μy∂y2 =f(x,y), (x,y)∈(0,1)×(0,1), (4)
and the boundary condition u = 0 on Γ (the boundary of the unit square), where u is a scalar function that models the temperature of a heat-conducting object modelled here as a unit square and f(x,y) is a function modelling a heat source. The heat conductivity coefficients, μx > 0 and μy > 0, can have different magnitudes (anisotropy).
(a) Discretising the problem (4) using the second-order finite differ- ence formulas
∂2u ≈ ui,j−1 − 2ui,j + ui,j+1 .
Write the second-order finite difference stencil (similarly as in Tu- torial 7)
∂2u ≈ ui−1,j − 2ui,j + ui+1,j , ∂x2 h2
  ∂y2
−μx h2 −μy h2 = fi,j.
h2 􏰀ui−1,j − 2ui,j + ui+1,j 􏰁 􏰀ui,j−1 − 2ui,j + ui,j+1 􏰁
leads to the discretised form
  ?**7;
s11 s12 s13 ?**8; ?**8;
S=s s s?**8;  21 22 23?**8;
?**8; s s s?**9;
corresponding to this finite difference scheme. [4 marks] (b) Implement a python function source function.py
    def source_function( x, y, h )
that returns the right-hand side by evaluating the function:
f(x,y) :=
⭺**;1, ifx≥0.1andx≤0.3andy≥0.1andy≤0.3 0, otherwise
.
Include the source code in your answer. [3 marks] 5
31 ** 33
(5)

 Figure 2: Computational domain for problem (4) and the sub-region where the heat source is located (in red).
(c) Modify the solver from Tutorial 7 to numerically solve the diffusion problem (4) for the right-hand side (5).
Solve the linear problem AU = F using the conjugate gradient method (without preconditioning) with the diffusion coefficients μx = 1 and μy = 1, stopping tolerance tol = 10−6, and maxi- mum of 1000 CG iterations. You can use the CG implementation in scipy.sparse.linalg.cg for this problem or code your own implementation.
Plot the solution surface and include the plot in your answer. How many iterations does it take for CG to converge in this case?
[2 marks]
(d) Consider now the use of a preconditioner to accelerate the con- vergence of CG. The incomplete-LU preconditioner approximates the system matrix A ≈ LincUinc by performing Gaussian elimi- nation but setting to zero any elements that are smaller than a dropoff tolerance ε chosen by the user. You can use the imple- mentation provided in scipy.sparse.linalg.spilu to compute
6

the incomplete factors Linc and Uinc.
Write a python implementation myPCG.py of the preconditioned
conjugate gradient from Lecture 18:
            def myPCG( A, b, L, U, tol, maxit )
that solves the preconditioning step for the residual, Mzi+1 = LU zi+1 = ri+1 , using appropriate solution algorithms. Include the source code as part of your answer. [4 marks]
(e) Solve the problem (4) again using your preconditioned CG imple- mentation from (d). Use a dropout tolerance of ε = 0.1 for the incomplete LU-factorisation.
How many nonzero elements (nnz) do the factors Linc and Uinc have in this case?
How many PCG iterations does the problem take to converge to tol = 10−6 now?
[2 marks]
(f) Repeat the experiment from (e) with different values of the dif- fusion coefficients. Solve the problem (4) with μx = 0.1 and μx = 0.01, while keeping the other value at μy = 1. Solve the problem using PCG with the same ILU-preconditioner as before with a dropout tolerance of ε = 0.1. Plot the two respective solu- tions and the respective number of CG iterations. What do you observe?
[5 marks]
3. General guidance and study support
The MS Teams group for COMP53**M Scientific Computation will be used for general support for this assignment. If your question would reveal parts of the answer to any problem, please send a private message to the module leader on MS Teams instead. You can also use the tutorial sessions to ask questions about coursework.
4. Assessment criteria and marking process
Assessment marks and feedback will be available on Minerva within
three weeks of the submission deadline. Late submissions are allowed 7

within 14 days of the original deadline providing that a request for an extension is submitted before the deadline. Standard late penalties apply for submissions without approved extensions.
5. Presentation and referencing
When writing mathematical formulas, use similar notation and sym- bols as during the lectures and tutorials. Hand-written sections for mathematical notation are acceptable but need to be clearly readable.
You may assume theorems and other results that have been presented during lectures and tutorials as known. Any other theorems need to be cited using standard citation practice.
6. Submission requirements
This is an individual piece of work. Submit your answers through Tur- nitin as one PDF document (generated either in Word or with LaTeX). You may use hand-written and scanned pages for mathematical formu- las, but these need to be clearly legible and the document must contain at least some typeset text or Turnitin will reject it. All submissions will be checked for academic integrity.
7. Academic misconduct and plagiarism
Academic integrity means engaging in good academic practice. This involves essential academic skills, such as keeping track of where you find ideas and information and referencing these accurately in your work.
By submitting this assignment you are confirming that the work is a true expression of your own work and ideas and that you have given credit to others where their work has contributed to yours.
8. Assessment/marking criteria grid
Total number of marks is 40, divided as follows:
Exercise 1 (One-dimensional Burgers equation): 20 marks
Exercise 2 (Anisotropic diffusion and conjugate gradient): 20 marks
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:CAN201 代做、代寫 Python語言編程
  • 下一篇:代寫COM6471、代做 java 語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲精品久久久一区二区三区| 1024日韩| 欧美搞黄网站| 亚洲欧美综合一区| 久久久久久久网| 亚洲精品影院在线观看| 久久嫩草精品久久久精品一| 国产性天天综合网| 国产热re99久久6国产精品| 欧美精品亚洲精品| 精久久久久久久久久久| 国产精品一区二区三区四区| 国产在线观看91精品一区| 午夜精品视频在线| 韩国v欧美v日本v亚洲v| 国语精品中文字幕| 黄色av一区| 性欧美videos另类喷潮| 亚洲国产精品久久久久久女王| 亚洲精品乱码久久久久久| 一区在线免费| 欧美日韩在线大尺度| 欧美日韩国产一级| 亚洲一区二区三区高清| 国产亚洲午夜| 国产精品久久久久久久app| 国产精品一卡二| 一区二区精品在线观看| 亚洲视频一区二区免费在线观看| 免费日韩精品中文字幕视频在线| 欧美激情在线有限公司| 国产欧美一区二区白浆黑人| 亚洲高清资源| 国产嫩草影院久久久久| 国产日产欧美a一级在线| 亚洲一区视频| 久久精品国产99国产精品| 欧美性理论片在线观看片免费| 欧美日韩第一页| 欧美激情无毛| 欧美日一区二区在线观看| 亚洲欧美日韩人成在线播放| 国产亚洲精品自拍| 欧美专区18| 一二三四社区欧美黄| 久久频这里精品99香蕉| 国产精品乱码一区二区三区| 亚洲欧美在线一区二区| 欧美精品在欧美一区二区少妇| 亚洲激精日韩激精欧美精品| 午夜在线播放视频欧美| 一区在线播放视频| 亚洲第一区中文99精品| 久久精品人人做人人综合| 久久一区欧美| 亚洲全部视频| 一区二区视频免费在线观看| 国产午夜精品一区二区三区视频| 亚洲伊人一本大道中文字幕| 国产精品va在线播放我和闺蜜| 国产亚洲成av人片在线观看桃| 国产欧美视频一区二区三区| 亚洲二区在线视频| 国内在线观看一区二区三区| 欧美午夜精品久久久久久超碰| 久久精品女人天堂| 亚洲大片在线观看| 欧美搞黄网站| 中国av一区| 国产专区欧美专区| 亚洲一区二区三区免费在线观看| 久久久成人网| 一本久道久久综合狠狠爱| 久久人人爽爽爽人久久久| 国产一区二区三区四区| 国产精品扒开腿做爽爽爽视频| 久久久久久婷| 亚洲成人中文| 国产真实精品久久二三区| 欧美成人精品h版在线观看| 欧美亚洲自偷自偷| 麻豆久久精品| 久久久免费精品视频| 亚洲欧美一级二级三级| 欧美性做爰毛片| 久久视频精品在线| 亚洲一区二区三区免费视频| 欧美人与禽猛交乱配视频| 欧美日韩一区二区免费视频| 欧美成在线观看| 欧美性大战xxxxx久久久| 欧美午夜电影在线| 蘑菇福利视频一区播放| 国产欧美日韩亚洲一区二区三区| 久久激情视频| 午夜欧美大尺度福利影院在线看| 欧美伦理91i| 国内成人精品2018免费看| 亚洲一区二区在线免费观看| 欧美日韩亚洲系列| 国产精品久久福利| 国产综合久久久久影院| 亚洲国产一区在线观看| 国产模特精品视频久久久久| 亚洲视频免费看| 精品盗摄一区二区三区| 狠狠综合久久av一区二区小说| 欧美日韩国产高清| 国产日本亚洲高清| 亚洲少妇中出一区| 亚洲人屁股眼子交8| 国产精品一区二区三区四区五区| 另类人畜视频在线| 亚洲精品人人| 久热精品视频在线观看| 亚洲精品欧美精品| 国产九九视频一区二区三区| 欧美精品国产一区二区| 欧美一区二区三区在线观看| 精品电影在线观看| 欧美中文字幕不卡| 亚洲欧洲在线播放| 亚洲国产精品99久久久久久久久| 欧美日韩一区二区三区免费看| 亚洲免费网站| 狠狠色综合一区二区| 这里只有精品电影| 狠狠综合久久av一区二区小说| 久久午夜精品一区二区| 亚洲午夜视频在线观看| 国产亚洲一本大道中文在线| 蜜臀91精品一区二区三区| 免费观看欧美在线视频的网站| 亚洲欧洲一区二区在线播放| 欧美日韩精品免费观看视频| 亚洲美女在线看| 国产毛片精品视频| 国产精品九色蝌蚪自拍| 欧美激情按摩在线| 亚洲午夜电影在线观看| 麻豆国产精品va在线观看不卡| 欧美午夜性色大片在线观看| 午夜国产欧美理论在线播放| 好吊色欧美一区二区三区视频| 国产综合色在线视频区| 亚洲欧洲精品一区二区三区波多野1战4| 久久久久一区| 亚洲国产视频一区二区| 欧美日韩国产不卡| 欧美在线观看一区| 欧美高清你懂得| 亚洲激情视频在线观看| 午夜精品一区二区三区在线视| 亚洲一区二区在线看| 国产亚洲激情在线| 欧美日韩精品一区视频| 欧美日本高清一区| 国产精品入口夜色视频大尺度| 国产视频亚洲精品| 欧美另类综合| 欧美大片在线观看一区二区| 欧美精品免费观看二区| 伊人久久大香线蕉av超碰演员| 国产精品乱人伦中文|