日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

INT305 代做、代寫 Python 語言編程

時間:2023-12-10  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Assessment Lab
INT305 – ASSESSMENT 2
Assessment Number 2 Contribution to Overall Marks 15% Submission Deadline 08/12/2023
Assessment Objective
This assessment aims at evaluating students’ ability to exploit the deep learning knowledge, which is accumulated during lectures, and after-class study, to analyze, design, implement, develop, test and document the images classification using CNN framework. The assessment will be based on the Pytorch software.
General Guidelines
1. The descriptions in the Problem Specifications are required to be analyzed with mathematic equations, combined with the explanations of all elements in each equation.
2. The modified parts of the source codes are required to include in the report.
3. The final classification performance that you obtain should be reported in the lab report. Meanwhile, the screenshots of the final performance results are also required in the report.
4. For the final performance results that you obtained, the numeric quantitative results are required. In addition, is also important to include some subjective image examples in the report.
5. Students need to conduct the coding and experiment all by yourself. The obtained results cannot be shared, and each student should analyze the results and write the report individually.
          
INT305 Assessment Lab
Image Object Classification (CIFAR-10)
Overall Description:
This lab is to use the Pytorch software and CNN (Convolutional Neural Network) framework for image object classification. Image classification aims to predict the category of object in an image (one image can only have one object in it). It has attracted much attention within the computer vision community in recent years as an important component for computer vision applications, such as self-driving vehicles, video surveillance and robotics. It is also the foundation of other computer vision research topics, such as object detection and instance segmentation.
CNN is a framework with both feature extraction and classification using deep convolutional neural network. A typical CNN pipeline is shown below.
Figure 1. CNN image classification pipeline.
The Dataset we will use is CIFAR-10 dataset, it contains 60000 **x** colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The followings are examples of CIFAR-10 dataset.
   
INT305
Assessment Lab
 Problem Specifications:
Figure 2. Examples of CIFAR-10 dataset.
 1. Please describe the 2 key components in the CNN framework: the convolutional kernel and the loss functions used in the framework. (20%)
2. Please train (or fine-tune) and test the framework on CIFAR-10 and report the final accuracy performance that you have achieved. Please also report some well classified and misclassified images by including the images and corresponding classification confidence value. (40%).
3. Propose your own method to further improve the classification performance or reduce the model size. You need also compare different methods with the performance you obtained and explain why. The final classification accuracy is not the most important part, you may better refer to some latest published papers and code these state of the art methods to improve the performance. The explanation and analysis of your adopted method is highly related to your final score. (40%)

INT305 Assessment Lab Environment Preparation:
1 Install Anaconda
1.1 Install Anaconda on Windows
Anaconda is open-source software that contains Jupyter, spyder, etc that is used for large data processing, data analytics, heavy scientific computing.
Conda is a package and environment management system that is available across Windows, Linux, and MacOS, similar to PIP. It helps in the installation of packages and dependencies associated with a specific language like python, C++, Java, Scala, etc. Conda is also an environment manager and helps to switch between different environments with just a few commands.
Step 1: Visit this website https://www.anaconda.com/products/individual-d and download the Anaconda installer.
Step 2: Click on the downloaded .exe file and click on Next.
Step 3: Agree to the terms and conditions.
   
INT305 Assessment Lab
 Step 4: Select the installation type.
 Step 5: Choose the installation location.

INT305 Assessment Lab
 Step 6: Now check the checkbox to add Anaconda to your environment Path and click Install.
This will start the installation.
Step 7: After the installation is complete you’ll get the following message, here click on Next.
 
INT305 Assessment Lab
 Step 8: You’ll get the following screen once the installation is ready to be used. Here click on Finish.
Verifying the installation:
Now open up the Anaconda Power Shell prompt and use the below command to check the conda version:
coda -V
If conda is installed successfully, you will get a message as shown below:
 
INT305 Assessment Lab
 1.2 Install Anaconda on Linux
Prerequisites
Firstly, open terminal on your Ubuntu system and execute the command mentioned below to update packages repository:
sudo apt update
Then install the curl package, which is further required for the downloading the installation script.
sudo apt install curl -y
Step 1 – Prepare the Anaconda Installer
Now I will go to the /tmp directory and for this purpose we will use cd command. cd /tmp
Next, use the curl command line utility to download the Anaconda installer script from the official site. Visit the Anaconda installer script download page to check for the latest versions. Then, download the script as below:
curl --output anaconda.sh https://repo.anaconda.com/archive/Anaconda3- 2021.05-Linux-x86_64.sh
To check the script SHA-256 checksum, I will use this command with the file name, though this step is optional:
sha256sum anconda.sh
Output:
25e3ebae8**5450ddac0f5c93f89c467 anaconda.sh

INT305 Assessment Lab Check if the hash code is matching with code showing on download page.
Step 2 – Installing Anaconda on Ubuntu
Your system is ready to install Anaconda. Let’s move to the text step and execute the Anaconda installer script as below:
bash anaconda.sh
Follow the wizard instructions to complete Anaconda installation process. You need to provide inputs during installation process as described below:
01. Use above command to run the downloaded installer script with the bash shell.
02. Type “yes” to accept the Anaconda license agreement to continue.
03. Verify the directory location for Anaconda installation on Ubuntu 20.04 system. Just hit Enter to continue installer to that directory.
04. Type “yes” to initialize the Anaconda installer on your system.
05. You will see the below message on successful Anaconda installation on Ubuntu 20.04 system.
        
INT305 Assessment Lab
 The Anaconda Installation Completed Sucessfully on your Ubuntu system. Installer added the environment settings in .bashrc file. Now, activate the installation using following command:
source ~/.bashrc
Now we are in the default base of the programming environment. To verify the installation we will open conda list.
conda list
Output:
# packages in environment at /home/tecadmin/anaconda3:
#
# Name Version _ipyw_jlab_nb_ext_conf 0.1.0
Build Channel py38_0
main
  pyhd3eb1b0_0
       py38_0
        py38_0
         py38_0
   pyhd3eb1b0_1
py38h06a4308_1
py_0
_libgcc_mutex alabaster anaconda anaconda-client anaconda-navigator anaconda-project anyio
appdirs
 0.1
 0.7.12
2021.05
  1.7.2
  2.0.3
  0.9.1
2.2.0 1.4.4
2 Install and configure PyTorch on your machine.
First, you'll need to setup a Python environment.
Open Anaconda manager via Start - Anaconda3 - Anaconda PowerShell Prompt and test your versions:
You can check your Python version by running the following command: python –-version
You can check your Anaconda version by running the following command: conda –-version
Now, you can install PyTorch package from binaries via Conda. 1 Navigate to https://pytorch.org/.
  
INT305 Assessment Lab
Select the relevant PyTorch installation details: •PyTorch build – stable.
•Your OS
•Package – Conda •Language – Python •Compute Platform – CPU.
 2 Open Anaconda manager and run the command as it specified in the installation instructions.conda install pytorch torchvision torchaudio cpuonly -c pytorch

INT305 Assessment Lab
 3 Confirm and complete the extraction of the required packages.
 Let’s verify PyTorch installation by running sample PyTorch code to construct a randomly initialized tensor.

INT305 Assessment Lab 4 Open the Anaconda PowerShell Prompt and run the following command.
python
import torch
x = torch.rand(2, 3) print(x)
The output should be a random 5x3 tensor. The numbers will be different, but it should look similar to the below.
 References
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代做ECM2418、代寫 java,Python 程序設計
  • 下一篇:CAN201 代做、代寫 Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        一区二区国产日产| 在线免费观看视频一区| 亚洲激情在线观看视频免费| 99国产精品久久久久老师| 狠狠色丁香婷综合久久| 欧美国产在线电影| 亚洲三级影院| 中文久久精品| 日韩午夜在线视频| 国内精品久久久久影院薰衣草| 最新国产乱人伦偷精品免费网站| 中文久久乱码一区二区| 中文亚洲视频在线| 欧美激情亚洲一区| 久久久亚洲欧洲日产国码αv| 亚洲精品视频在线观看网站| 久久成人国产精品| 国产欧美日韩综合一区在线播放| 亚洲少妇最新在线视频| 国产精品对白刺激久久久| 欧美日韩亚洲综合| 国产欧美日韩三级| 亚洲国产精品一区| 午夜精彩国产免费不卡不顿大片| 欧美小视频在线| 中文国产亚洲喷潮| 亚洲精品国久久99热| 国产九色精品成人porny| 亚洲国产精品久久91精品| 欧美精品高清视频| 中文在线资源观看视频网站免费不卡| 国产伦理一区| 国模精品一区二区三区色天香| 亚洲乱码国产乱码精品精| 激情视频一区二区| 91久久久一线二线三线品牌| 欧美日韩一区视频| 国产精品www994| 亚洲免费一级电影| 在线观看日韩av电影| 欧美激情精品久久久久久免费印度| 亚洲精品久久久久久久久久久久久| 亚洲人午夜精品| 国产精品视频不卡| 好看的av在线不卡观看| 欧美亚洲不卡| 国产一区二区久久精品| 亚欧成人在线| 国产欧美午夜| 欧美日韩在线视频一区| 国产精品电影在线观看| 好看的亚洲午夜视频在线| 亚洲国产91色在线| 国产免费亚洲高清| 亚洲自拍偷拍视频| 久久激情五月激情| 欧美日本视频在线| 欧美一区二区三区视频| 亚洲精品永久免费| 国产一区二区三区成人欧美日韩在线观看| 亚洲精品久久久久久久久久久久| 99v久久综合狠狠综合久久| 欧美一级在线亚洲天堂| 国产精品盗摄久久久| 亚洲一区不卡| 蜜桃视频一区| 欧美午夜视频在线| 一本色道久久88综合亚洲精品ⅰ| 亚洲视频每日更新| 精品88久久久久88久久久| 99精品视频一区二区三区| 狠狠88综合久久久久综合网| 在线观看欧美成人| 亚洲乱码日产精品bd| 欧美黄色一区二区| 国产一区二区三区在线观看网站| 欧美成人中文字幕在线| 在线精品国产欧美| 美国十次成人| 中文亚洲免费| 久久精品国产91精品亚洲| 欧美日韩综合一区| 国产欧美在线观看| 欧美日韩国产一级片| 久久亚裔精品欧美| 欧美韩国一区| 黄色一区二区三区四区| 先锋影音国产一区| 欧美国产日韩在线观看| 久久gogo国模啪啪人体图| 亚洲一区二区欧美日韩| 美女视频黄a大片欧美| 欧美亚洲网站| 在线观看视频日韩| 欧美三级特黄| 99精品欧美一区二区三区综合在线| 久久九九精品| 亚洲午夜视频在线| 久久成人18免费观看| 亚洲一区二区三区中文字幕| 亚洲一区二区在线免费观看视频| 亚洲高清资源| 国产精品99久久久久久久女警| 欧美日韩一区二区高清| 免费欧美电影| 亚洲黄网站在线观看| 影音先锋中文字幕一区| 国产精品亚洲人在线观看| 国产精品视频九色porn| 欧美性久久久| 美国十次了思思久久精品导航| 国产视频久久| 亚洲欧美一区二区在线观看| 久久午夜色播影院免费高清| 亚洲国产精品va在线看黑人动漫| 亚洲欧美变态国产另类| 一道本一区二区| 免费欧美电影| 欧美激情aaaa| 亚洲日本欧美日韩高观看| 国产精品一区二区久久国产| 国产一区日韩欧美| 国产主播一区二区三区四区| 欧美色欧美亚洲另类七区| 亚洲人精品午夜在线观看| 欧美亚洲在线播放| 欧美日韩综合视频| 欧美高清视频一二三区| 久久综合亚洲社区| 一本色道久久| 一本综合精品| 国产一区二区精品久久99| 国内不卡一区二区三区| 一区二区三区.www| 欧美日韩一区在线视频| 亚洲人精品午夜在线观看| 亚洲最新视频在线| 亚洲深夜福利视频| 亚洲欧美亚洲| 欧美精品一区三区在线观看| 欧美视频一区二区三区在线观看| 国产精品盗摄一区二区三区| 亚洲综合清纯丝袜自拍| 欧美日韩亚洲国产一区| 亚洲国产精品专区久久| 猛男gaygay欧美视频| 伊甸园精品99久久久久久| 久久久久久亚洲精品不卡4k岛国| 亚洲九九九在线观看| 欧美在线观看网站| 亚洲成人影音| 国产亚洲精品aa午夜观看| 亚洲国产精品久久久久秋霞蜜臀| 久久久久久久久久久久久女国产乱| 欧美激情片在线观看| 欧美成人午夜免费视在线看片| 中文精品视频一区二区在线观看| 亚洲欧美日本精品| 亚洲欧美日韩国产| 欧美日韩另类国产亚洲欧美一级| 一区二区免费在线观看| 国产麻豆精品theporn| 欧美三级午夜理伦三级中视频| 欧美日韩午夜在线|