日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

EEEN30141代寫、C++語言程序代做

時間:2023-11-22  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


EEEN30141 Concurrent Systems

1. Introduction and Overview

The coursework is in three parts that will fit together into the simulation of four-by-one

hundred metres sprint relay race1. The race consists of NO_TEAMS competing teams and

each team has NO_MEMBERS members. NO_TEAMS and NO_MEMBERS are both four.

The three parts of the coursework are as follows:

• Part 1: This is concerned with creating and starting a two dimensional array of

threads, each thread representing a runner, interrogating thread properties, and

using random numbers and time delays to represent each runner’s race time. It

also involves these use of C++ maps.

• Part 2: This involves synchronising threads at the start of the race, at the baton

exchanges and ensuring that there is only one winner – photo-finishes are not

allowed in this simulation!

• Part 3: Integrates the code from parts 1 and 2 into the compete simulation.

Although the coursework should be undertaken in the three parts described above, there is

only one submission of the complete program, or as much of it as you have completed by

the deadline.

1.1 Development Environment

You should use the Microsoft Visual Studio IDE to develop your code. This is available on

the Computer Clusters in Engineering Building A and for download via the instruction on the

unit’s Blackboard pages.

1.2 Contact Sessions

The coursework assignment is an individual piece of work that you should complete

independently in your own time (as specified in the Unit Delivery Plan).

There will be a number of one hour lab sessions attended by staff and GTAs to enable you

ask questions about the assignment and seek advice on your code. There will also be code

surgeries run by the Unit Coordinator. Attendance at these sessions is not compulsory.

The schedule of sessions will be published separately.

1.3 Submission of Coursework

The submission of your coursework should a single .zip file. NO OTHER COMPRESSION

FORMAT THAN .ZIP WILL BE ACCEPTED, and if you upload a file in a different format (such

as .7z, .rar etc) you will receive a mark of ZERO. This uploaded .zip file should contain

1 https://en.wikipedia.org/wiki/4_%C3%97_100_metres_relay.

3

your Visual Studio project, including all the source files and headers. A marker should be

able to access you code by double clicking the .vcxproj file, and then building it.

The upload deadline is 13.00 MONDAY 27th NOVEMBER 2023 (week 10). The standard

Departmental penalties for late submissions apply.

Further details about the upload will be provided later.

2. Overview of Part 1

The objective of this part is to write a C++ program that declares a two dimensional array of

thread objects, each of which executes the function run and represents an athlete

competing in the race. The athlete’s time to complete the race is simply a random number,

which is used to produce a time delay in the run function.

The initial version of run to be developed in Part 1 has the following prototype:

void run(Competitor& c);

Class Competitor will be provided for you to use. It is discussed in Section 3 below. Note that

it requires a small, but non-trivial extension. Objects of class Competitor identify the

athletes in the race.

run should sleep for a random period that is compatible with the time taken to run

100 m by a professional athlete2, and print out the calling thread’s id.

To create an array of threads, you will need to use class thread’s default constructor in

the array declaration. The default constructor is briefly introduced near the end of Lecture 4

(slide Threads, Thread Objects and Move Assignment) and one of the example programs

illustrates one way of using it. A thread must then be assigned to each element of the array.

You are expected to do some Internet research on the exact details of how to accomplish

this, although it is straightforward.

The Lecture 4 slide mentioned above also provides an example of how to find the identifier

given to a thread by the underlying run-time system.

3. class Competitor

This allows the program to specify the name of an athlete and the name of the team to

which they belong. The basic version of this class, which is usable at the start of the

coursework is as follows:

2 The women’s world record for the 100 m sprint is 10.49 s, set by Florence Griffith-Joyner (US). The men’s

record is 9.58 s, set by Usain Bolt (Jamacia).

4

Competitor.h

#pragma once

#include <string>

using namespace std;

class Competitor {

// created in main, never updated, passed to a thread, placed in map

private:

 string teamName;

 string personName;

public:

 Competitor();

 Competitor(string tN, string pN);

 void setTeam(string tN);

 string getTeam();

 void setPerson(string pN);

 string getPerson();

 static Competitor makeNull();

 void printCompetitor();

};

Competitor.cpp

#include "Competitor.h"

#include <iostream>

Competitor::Competitor() {}

Competitor::Competitor(string tN, string pN) : teamName(tN), personName(pN) {}

void Competitor::setTeam(string tN) { teamName = tN; }

string Competitor::getTeam() { return teamName; }

void Competitor::setPerson(string pN) { personName = pN; }

string Competitor::getPerson() { return personName; }

Competitor Competitor::makeNull() { return *(new Competitor(" ", " ")); }

void Competitor::printCompetitor() {

 std::cout << "Team = " << teamName << " Person = " << personName << std::endl;

}

The class has two data members of type string: teamName and personName, that enable

individual athletes to be specified in terms of their team and name e.g., Jamacia and Bolt.

There is a default constructor and a constructor that allows these data members to be

initialised. set and get functions that are common in data holding classes to modify and

return the values of data members are also included. printCompetitor simply prints the

current values of teamName and personName.

The makeNull member function returns a ‘null Competitor’ object whose data members

are both a single character of white space. It can be useful when writing a class to define

and implement a null object, and this is the case here, as discussed in the Appendix.

When a thread is created it is given a thread id by the underlying run-time system (the code

provided by the compiler that interfaces with the Operating System). Lecture 4 explains how

this id can be found. The id and the corresponding Competitor object should be stored in a

map container (see line 8 in the pseudo code of Section 4) and Appendix A1.2. This enables

a thread to determine which Competitor it represents.

5

4. First Version of the Program

A skeleton of the first version of the program is shown and explained below

1. #include <iostream>

2. #include <string>

3. #include //other .h files

4. // Random number generation – see Appendix 1.1

5. const int NO_TEAMS = 4; // number of teams in the race

6. const int NO_MEMBERS = 4; // number of athletes in the team

7. void run(Competitor& c) {

8. // store thread id and competitor in a map

9. // delay for random period

10. // print message stating which competitor has just ‘finished’

11. }

12. int main() {

13. thread theThreads[NO_TEAMS][NO_MEMBERS];

14. Competitor teamsAndMembers[NO_TEAMS][NO_MEMBERS];

15. // define elements of teamsAndMembers

16. // create threads (elements of theThreads)

17. // join threads

18. }

Notes:

Line 3: You will need to #include other header files to complete this part of the

coursework.

Line 5: Global constant representing the number of teams in the race.

Line 6: Global constant representing the number of athletes in each team.

Line 7: This is the function executed by each of the threads. It must be passed a

Competitor object that defines which team and athlete the thread represents.

Line 8: The thread id and Competitor should be stored in a map container. This supports

a mapping between the system thread id and the identity of the athlete

represented by the thread. It is needed because thread ids are system generated

and so it is difficult to know which thread is running a particular Competitor. If

this information is stored in a map then the identity of the Competitor can be

found from the thread id. See Appendix 1.2.

Line 9: This delay represents the time taken for an athlete to run 100 m. This will be a

random number between the world record time and 12 s.

Line 10: This involves calling the printCompetitor member function for the Competitor

object passed to run.

Line 13: The declaration of the two dimensional array of threads.

Line 14: The declaration of the two dimensional array of Competitors.

Line 15: This will be multiple lines in your code, each line defining a Competitor in term of

their team name and person (family) name.

Line 16: Again, this will be multiple lines within your code that creates the threads.

Line 17: All the threads should be joined. Multiple lines in your code.

6

5. Thread Safety

Besides writing some parts of the ThreadMap class, you should consider whether part or all

of the class needs to be thread-safe. Thread safety ensures that objects of a class can be

used reliably in the presence of multiple threads without suffering from concurrency-related

problems. THIS IS A PART OF THE ASSESSMENT OF THE FINAL PROGRAM.

If you decide that Thread safety is relevant, then you should use appropriate techniques to

ensure it. These must be consistent with good program practice as well as being effective.

6. Advice

You should aim to complete this part of the assignment by the start of

week 7.

7

Appendix: Additional Information

A1.1. Random Numbers

The assignment requires the use of random numbers. The standard C/C++ rand and srand

functions have limitations, and so the Mersenne Twister algorithm is used. This is a

powerful and commonly used technique, which is built into C++ via the class mt19937,

available via random.h.

The Twister algorithm is contained in the wrapper class RandomTwister, shown below.

The uniform_int_distribution template is used which provides a uniform, discrete

probability distribution within a defined range, where the numbers within the range have

the same probability of selection3 . These facilities have been used to build the class

RandomTwister below that is provided in the skeleton code, available on Blackboard.

class RandomTwister {

private:

 std::mt19937 rnd; // rnd is an object of class mt19937

 std::mutex mu;

public:

RandomTwister() : rnd(std::chrono::high_resolution_clock::now().

time_since_epoch().count()){ }

 int randomPeriod(int l, int u) {

 std::lock_guard<std::mutex> guard (mu);

 std::uniform_int_distribution<int> dis(l, u);

 int n = dis(rnd);

 return n;

 }

};

RandomTwister rt;

rt should be a global variable4.

A1.2. Maps

Object Oriented Programming makes use of the idea of Container Classes – classes that

store many instances of objects of some other class. Buffers and stacks are examples of

Container Classes that you have already encountered, but there are many others, including

sets, lists, trees and graphs.

Different Container Classes efficiently support different access patterns to the data stored in

them, and a key programming skill is choosing a good container for a particular application.

Buffers support FIFO access that is needed in Producer-Consumer problems, Stacks support

LIFO access which is needed in compilers and navigation applications, amongst others.

3 See https://cplusplus.com/reference/random/uniform_int_distribution 4 Global variable should be avoided as they can introduce difficult-to-find errors. However, the state of rt is not

changed – it simply produces random numbers when randomPeriod is called, so cannot cause errors of the

kind that were just mentioned.

8

C++ is supported by the Standard Template Library (STL) which provides a large library of

classes, many of which are Container Classes. The library is based on templates so that the

type of object stored can be customised for a particular application.

In this part of the assignment, you need to use the STL library map class. A map is an

associative container that uses a key to locate a mapped value. In a sense, it provides an

abstraction of an array. In an array, the desired element is specified by an integer index. In

a map the ‘index’ is the key and can be of any type. Each mapped value is associated with

a unique5 key.

An example of a map is shown below6. Each map entry is a pair – the first item (the key) is a

Roman numeral between one and ten. The second item in the pair is the text representing

the same number in decimal. In a program that used this map, both the Roman numeral and

the text decimal number would be strings. The map allows the program to specify the

Roman numeral and to find the corresponding text name.

Roman numeral

(key)

Text decimal number

(mapped value)

i one

ii two

iii three

iv four

v five

vi six

vii seven

viii eight

ix nine

x ten

In the assignment, the key is the system thread id, and the data element associated with

the key is the Competitor. Why is this helpful? Well, a thread can discover its id via the

get_id function from the this_thread namespace (see lecture 4). However, a thread

cannot know the Competitor that it represents. Hence the ‘mapping’ between thread id and

Competitor is stored in a map.

When a thread needs to know which Competitor it represents (e.g., for providing output

that can be understood by users, such as printing the finishing order of the teams), it finds

its id by calling get_id and then requests the map to provide the Competitor that

corresponds to the thread id.

5 If you attempt to insert a pair with a key that is already in the map, then the insertion will fail, but no error is

flagged.

6 Not a very useful one!

9

6.1 Using Maps in this Assignment

In order to use maps in this application it is necessary to use a ‘wrapper class’ – a class that

is based on the STL map, but which provides some extra functionality. This is called

ThreadMap.

Like most classes in the STL, maps have many member functions. However, for this

assignment you will only need to use the following (at most)7:

• begin() – Returns an iterator to the first element in the map

• end() – Returns an iterator to the notional element that follows last element in the

map

• size() – Returns the number of elements in the map

• insert(keyvalue, mapvalue) – Adds a new pair to the map

• find(keyvalue) – Returns an iterator that indicates the map entry containing the

key value. If the key value is not present in the map, find returns an iterator to end()

(see above).

An iterator can be thought of as a pointer which can be moved to point to each map

element in turn. Hence iterators can be used to search for an entry (as with the find

function above), or to ‘visit’ every element e.g., if the contents of the map are to be printed

out.

6.2 Wrapper Class – ThreadMap

Here is the header file for the wrapper class ThreadMap (also included in the Part 1

skeleton program):

1. #include <map>

2. #include "Competitor.h"

3. ...

4. class ThreadMap {

5. private:

6. std::map <std::thread::id, Competitor> threadComp;

7. public:

8. ThreadMap();

9. void insertThreadPair(Competitor c);

10. Competitor getCompetitor();

11. void printMapContents();

12. int ThreadMapSize();

13. };

Line 1: This must be included to enable the creation of a map objects.

Line 2: The map will store Competitor objects, so this is needed.

Line 6: This declares a map called threadComp, whose entries are thread id/Competitor

pairs, as specified by the types within the angle brackets.

Line 8: constructor.

7 See https://thispointer.com/stdmap-tutorial-part-**usage-detail-with-examples/

10

Line 9: This function inserts a thread id/Competitor pair into the map threadComp.

Line 10: This member function returns the Competitor corresponding to the id of the thread

that calls it.

The following is part of ThreadMap.cpp:

1. #include "ThreadMap.h"

2. ThreadMap::ThreadMap() {}; // constructor

3. void ThreadMap::insertThreadPair(Competitor c) {

 // create a threadID, Competitor pair using a call to std::make_pair

 // store the pair in the map using the map insert member function

 }

4. Competitor ThreadMap::getCompetitor() {

5. std::map <std::thread::id, Competitor>::iterator

 it = threadComp.find(std::this_thread::get_id());

6. if (it == threadComp.end())

7. return Competitor::makeNull();

8. else

9. return it->second; // the second item in the pair (the Competitor)

10.}

11.void ThreadMap::printMapContents() {

12. std::cout << "MAP CONTENTS:" << std::endl;

13. std::map <std::thread::id, Competitor>::iterator it = threadComp.begin();

 // you need to write the rest!

14. cout << "END MAP CONTENTS" << endl;

15.}

16. int ThreadMap::ThreadMapSize() { return threadComp.size(); }

Line 3: Writing this function is part of the assignment.

Line 4: This function searches the map for the Competitor corresponding to the id of the

thread that calls it.

Line 5: This creates an iterator that will be used to search for thread id/Competitor pairs

by calling the find function of class map. If find returns end() (see above) then

the thread id is NOT present in the map and so a ‘null Competitor’ object is

returned8 (lines 6 and 7). If the thread id is found, then the second element of the

pair (the Competitor) is returned. This is what it->second does (line 9).

Line 13. This creates an iterator that is used to move through the map, allowing each

element to be printed out. It is initialised to indicate the first element of the map

(it = threadComp.begin();).

The code to move through the map is part of the assignment. This is very

straightforward, particularly if you recall that it is possible in C/C++ to iterate

through an array using a pointer rather than an array index.

8 This is the reason for including makeNull in class Competitor.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:指標代寫 代寫同花順指標公式
  • 下一篇:ISOM 3029 程序代做 Using C++
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美午夜精品理论片a级大开眼界| 久久综合九色综合欧美就去吻| 欧美三级在线视频| 亚洲午夜视频在线观看| 亚洲欧美国产精品va在线观看| 国产日韩欧美a| 欧美亚洲第一页| 欧美精品97| 亚洲欧洲精品一区| 国模精品娜娜一二三区| 免费美女久久99| 亚洲理伦在线| 国产综合欧美在线看| 亚洲欧美在线高清| 国产精品一区二区在线观看| 亚洲电影在线观看| 亚洲欧美日本在线| 久久成人免费网| 欧美大片在线看免费观看| 亚洲一区在线免费| 国产精品国产三级国产aⅴ无密码| 国产日韩欧美在线播放不卡| 美女脱光内衣内裤视频久久影院| 在线日韩日本国产亚洲| 久久超碰97中文字幕| 樱桃视频在线观看一区| 亚洲一区精品在线| 亚洲午夜视频在线观看| 亚洲欧美日韩精品| 欧美成人按摩| 91久久嫩草影院一区二区| 欧美一区二区成人6969| 国产精品视频免费在线观看| 亚洲级视频在线观看免费1级| 久久久久久久久久久成人| 亚洲欧美另类久久久精品2019| 欧美无砖砖区免费| 久久人人爽人人爽| 欧美视频中文在线看| 国产一区二区三区成人欧美日韩在线观看| 夜夜嗨一区二区三区| 中文在线不卡视频| 亚洲片国产一区一级在线观看| 欧美日韩高清不卡| 欧美色图首页| 精品成人免费| 亚洲午夜国产成人av电影男同| 欧美日韩另类一区| 老妇喷水一区二区三区| 亚洲一区二区高清| 欧美日韩一视频区二区| 亚洲国产精品成人一区二区| 欧美在线黄色| 国产亚洲激情在线| 久久一二三区| 国产性色一区二区| 这里只有精品丝袜| 亚洲午夜黄色| 巨胸喷奶水www久久久免费动漫| 亚洲人被黑人高潮完整版| 午夜在线播放视频欧美| 国产婷婷色一区二区三区在线| 欧美成人dvd在线视频| 欧美在线免费观看| 激情欧美国产欧美| 小黄鸭精品密入口导航| 欧美日韩精品高清| 亚洲精品在线观| 精品不卡一区二区三区| 欧美日韩国产在线看| 久久久久久久久岛国免费| 欧美精品99| 国内精品**久久毛片app| 女女同性女同一区二区三区91| 欧美大片在线观看一区二区| 欧美专区亚洲专区| 久久久999精品视频| 国产精品影视天天线| 欧美大片免费| 亚洲区一区二区三区| 亚洲激情在线观看| 99在线热播精品免费99热| 亚洲综合精品四区| 在线欧美电影| 亚洲欧美日本国产专区一区| 蜜臀久久99精品久久久画质超高清| 久久www成人_看片免费不卡| 国产亚洲制服色| 久久国产一区二区| 久久精品夜色噜噜亚洲a∨| 国产午夜精品在线观看| 国产精品网曝门| 好吊妞这里只有精品| 欧美大片在线观看一区| 欧美 日韩 国产精品免费观看| 先锋影音国产一区| 国产精品热久久久久夜色精品三区| 亚洲精品欧美激情| 日韩小视频在线观看专区| 国产情人综合久久777777| 欧美日韩一区成人| 亚洲第一级黄色片| 国产精品国产三级国产aⅴ9色| 国产一区91精品张津瑜| 亚洲综合激情| 午夜视频在线观看一区| 欧美专区福利在线| 激情综合色综合久久综合| 国产日韩精品一区观看| 欧美精品国产精品| 加勒比av一区二区| 樱桃国产成人精品视频| 亚洲午夜久久久久久尤物| 国产乱码精品一区二区三区不卡| 国产精品美女主播在线观看纯欲| 亚洲国产精品专区久久| 国产免费成人在线视频| 亚洲视频电影图片偷拍一区| 欧美日韩国产影院| 精品69视频一区二区三区| 免费观看欧美在线视频的网站| 久久av一区二区三区漫画| 欧美成人午夜免费视在线看片| 久久免费观看视频| 亚洲激情综合| 欧美日韩在线不卡一区| 一本大道久久a久久精品综合| 欧美午夜理伦三级在线观看| 欧美精品综合| 亚洲视屏在线播放| 久久久久国色av免费看影院| 亚洲午夜精品网| 在线观看成人av| 国产精品久线观看视频| 亚洲欧美国产高清| 国产精品国产三级国产专区53| 亚洲午夜小视频| 伊人久久大香线蕉综合热线| 在线观看不卡av| 亚洲欧洲日韩综合二区| 国产热re99久久6国产精品| 亚洲黄页一区| 在线亚洲国产精品网站| 亚洲人成人一区二区在线观看| 亚洲一区二区三区在线观看视频| 久久不射2019中文字幕| 美女国产一区| 亚洲高清不卡在线观看| 亚洲欧美激情四射在线日| 欧美激情免费观看| 美日韩精品视频| 亚洲国产高清在线观看视频| 久久精品国产77777蜜臀| 欧美日本免费| 国内外成人在线| 欧美日韩国产精品专区| 久久精品亚洲精品国产欧美kt∨| 亚洲美女黄色片| 欧美高清一区| 久久免费精品日本久久中文字幕| 欧美日韩成人网| 午夜在线视频观看日韩17c| 麻豆国产精品一区二区三区| 欧美国产视频在线观看|