日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫CSE 158、代做Python語言編程

時間:2023-11-18  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


CSE 158/258, DSC 256, MGTA 461, Fall 2023: Assignment 1

Instructions

In this assignment you will build recommender systems to make predictions related to video game reviews

from Steam.

Submissions will take the form of prediction files uploaded to gradescope, where their test set performance

will be evaluated on a leaderboard. Most of your grade will be determined by ‘absolute’ cutoffs;

the leaderboard ranking will only determine enough of your assignment grade to make the

assignment FUN.

The assignment is due Monday, Nov 20, though make sure you upload solutions to the leaderboard

regularly.

You should submit two files:

writeup.txt a brief, plain-text description of your solutions to each task; please prepare this adequately in

advance of the submission deadline; this is only intended to help us follow your code and does not need

to be detailed.

assignment1.py A python file containing working code for your solutions. The autograder will not execute

your code; this file is required so that we can assign partial grades in the event of incorrect solutions,

check for plagiarism, etc. Your solution should clearly document which sections correspond to

each task. We may occasionally run code to confirm that your outputs match submitted answers, so

please ensure that your code generates the submitted answers.1

Along with two files corresponding to your predictions:

predictions Played.csv, predictions Hours.csv Files containing your predictions for each (test) instance

(you should submit two of the above three files). The provided baseline code demonstrates how to

generate valid output files.

To begin, download the files for this assignment from:

https://cseweb.ucsd.edu/classes/fa23/cse258-a/files/assignment1.tar.gz

Files

train.json.gz 175,000 instances to be used for training. This data should be used for both the ‘play prediction’

and ‘time played prediction’ tasks. It is not necessary to use all observations for training, for example if

doing so proves too computationally intensive.

userID The ID of the user. This is a hashed user identifier from Steam.

gameID The ID of the game. This is a hashed game identifier from Steam.

text Text of the user’s review of the game.

date Date when the review was entered.

hours How many hours the user played the game.

hours transformed log2

(hours+1). This transformed value is the one we are trying to predict.

pairs Played.csv Pairs on which you are to predict whether a game was played.

pairs Hours.csv Pairs (userIDs and gameIDs) on which you are to predict time played..

baselines.py A simple baseline for each task, described below.

Please do not try to collect these reviews from Steam, or to reverse-engineer the hashing function I used to

anonymize the data. Doing so will not be easier than successfully completing the assignment. We will run

the code of any solution suspected of violating the competition rules, and you may be penalized

if your code does produce your submitted solution.

1Don’t worry too much about dependencies if importing non-standard libraries.

1

Tasks

You are expected to complete the following tasks:

Play prediction Predict given a (user,game) pair from ‘pairs Played.csv’ whether the user would play the

game (0 or 1). Accuracy will be measured in terms of the categorization accuracy (fraction of correct

predictions). The test set has been constructed such that exactly 50% of the pairs correspond to played

games and the other 50% do not.

Time played prediction Predict how long a person will play a game (transformed as log2

(hours + 1), for

those (user,game) pairs in ‘pairs Hours.csv’. Accuracy will be measured in terms of the mean-squared

error (MSE).

A competition page has been set up on Kaggle to keep track of your results compared to those of other

members of the class. The leaderboard will show your results on half of the test data, but your ultimate score

will depend on your predictions across the whole dataset.

Grading and Evaluation

This assignment is worth 22% of your grade. You will be graded on the following aspects. Each of the two

tasks is worth 10 marks (i.e., 10% of your grade), plus 2 marks for the written report.

• Your ability to obtain a solution which outperforms the leaderboard baselines on the unseen portion of

the test data (5 marks for each task). Obtaining full marks requires a solution which is substantially

better than baseline performance.

• Your ranking for each of the tasks compared to other students in the class (3 marks for each task).

• Obtain a solution which outperforms the baselines on the seen portion of the test data (i.e., the leaderboard). This is a consolation prize in case you overfit to the leaderboard. (2 mark for each task).

Finally, your written report should describe the approaches you took to each of the tasks. To obtain good

performance, you should not need to invent new approaches (though you are more than welcome to!) but

rather you will be graded based on your decision to apply reasonable approaches to each of the given tasks (2

marks total).

Baselines

Simple baselines have been provided for each of the tasks. These are included in ‘baselines.py’ among the files

above. They are mostly intended to demonstrate how the data is processed and prepared for submission to

Gradescope. These baselines operate as follows:

Play prediction Find the most popular games that account for 50% of interactions in the training data.

Return ‘1’ whenever such a game is seen at test time, ‘0’ otherwise.

Time played prediction Return the global average time, or the user’s average if we have seen them before

in the training data.

Running ‘baselines.py’ produces files containing predicted outputs (these outputs can be uploaded to Gradescope). Your submission files should have the same format.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP 340 Operating Systems
  • 下一篇:SEHH2042代做、代寫c++,Java編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        亚洲日韩第九十九页| 欧美成人在线影院| 久久综合色播五月| 亚洲最新在线| 在线午夜精品| 亚洲精品在线视频| 亚洲一区二区在线免费观看视频| 欧美中在线观看| 国产乱码精品一区二区三区不卡| 久久精品久久综合| 亚洲欧美日韩视频一区| 一区二区三区精品久久久| 亚洲欧美久久久久一区二区三区| 欧美日韩一区在线观看视频| 亚洲一二三区精品| 亚洲一二三区在线| 影音先锋日韩精品| 久久综合伊人77777蜜臀| 欧美日韩中文字幕在线视频| 99精品国产福利在线观看免费| 美女国产精品| 国产精品久久久久久久久免费| 小处雏高清一区二区三区| 在线观看91久久久久久| 另类综合日韩欧美亚洲| 欧美巨乳波霸| 亚洲第一区在线观看| 国内精品久久国产| 精品91视频| 亚洲精品国产精品国自产观看| 亚洲午夜免费视频| 欧美一区二区黄色| 国产日产欧产精品推荐色| 久久中文字幕一区二区三区| 裸体歌舞表演一区二区| 亚洲欧美日韩国产综合| 国产精品av久久久久久麻豆网| 久久理论片午夜琪琪电影网| 国产精品久久网| 99re成人精品视频| 国产一区二区三区四区五区美女| 欧美午夜久久| 欧美日韩亚洲一区二区三区在线观看| 国产精品日韩一区二区| 日韩视频不卡中文| 中文在线不卡| 另类专区欧美制服同性| 国产一区二区三区久久精品| 在线高清一区| 欧美一区二区三区免费观看视频| 亚洲欧美日韩在线综合| 一区二区三区日韩在线观看| 亚洲色在线视频| 亚洲成人在线网站| 亚洲国产cao| 久久aⅴ国产紧身牛仔裤| 国产精品影片在线观看| 国产精品电影在线观看| 欧美精品91| av不卡免费看| 亚洲国产日韩欧美| 亚洲一区精品视频| 久久成人免费视频| 亚洲欧美一区二区在线观看| 国内久久视频| 一区二区高清视频| 亚洲伦理中文字幕| 亚洲欧洲精品一区二区| 国产精品福利在线观看| 欧美成人激情在线| 欧美大片国产精品| 牛牛国产精品| 亚洲一卡二卡三卡四卡五卡| 欧美日韩精品免费看| 亚洲视频网在线直播| 亚洲无限av看| 欧美国产1区2区| 日韩亚洲欧美一区二区三区| 欧美日韩国产成人在线91| 精品不卡一区二区三区| 韩国av一区| 欧美日韩成人一区二区| 欧美日韩精品二区第二页| 亚洲欧美日韩国产成人| 午夜在线观看欧美| 欧美成人一区在线| 久久精品五月婷婷| 久久国产欧美精品| 在线视频日本亚洲性| 91久久久国产精品| 欧美与欧洲交xxxx免费观看| 午夜视频久久久久久| 久久人人看视频| 理论片一区二区在线| 午夜精品视频在线观看一区二区| 日韩一区二区免费高清| 国产精品丝袜白浆摸在线| 欧美亚洲综合另类| 国产精品成人午夜| 激情久久久久久| 久久午夜精品一区二区| 一区二区三区国产在线| 欧美日韩亚洲成人| 国产美女搞久久| 激情欧美一区二区三区| 国产日韩精品一区观看| 亚洲自拍另类| 一区二区电影免费在线观看| 国产日韩欧美精品综合| 国产精品视频yy9299一区| 国内精品久久久久国产盗摄免费观看完整版| 亚洲高清不卡| 国产日韩欧美在线| 国产日韩精品一区二区浪潮av| av不卡免费看| 国产精品女主播在线观看| 蜜桃久久av一区| 欧美性猛交xxxx乱大交蜜桃| 国产伦精品一区二区三区高清版| 亚洲欧美日韩在线观看a三区| 91久久精品一区二区别| 国产主播在线一区| 亚洲黄色在线观看| 久久蜜桃香蕉精品一区二区三区| 一区二区三区四区五区精品视频| 午夜伦理片一区| 在线日韩av永久免费观看| 在线亚洲国产精品网站| 国产精品分类| 欧美日韩精品欧美日韩精品一| 欧美三级视频| 夜夜精品视频| 亚洲午夜国产成人av电影男同| 欧美日本高清| 久久综合亚洲社区| 久久综合久久综合这里只有精品| 亚洲永久免费| 欧美乱人伦中文字幕在线| 欧美区在线播放| 在线日韩精品视频| 国产精品日韩在线一区| 日韩视频在线观看| 欧美日韩成人在线观看| av成人激情| 欧美日韩一区二区三区四区在线观看| 欧美激情精品久久久久久黑人| 亚洲国产欧美一区二区三区同亚洲| 亚洲精品日韩在线| 国产在线国偷精品产拍免费yy| 国外精品视频| 欧美日韩大片一区二区三区| 国模精品一区二区三区色天香| 国产亚洲精品美女| 99在线热播精品免费| 一区二区三区.www| 午夜欧美精品| 欧美色视频日本高清在线观看| 国产精品男人爽免费视频1| 亚洲在线观看| 免费国产自线拍一欧美视频| 久久久久网址| 亚洲一区二区三区欧美| 国产一区二区三区电影在线观看| 在线视频你懂得一区二区三区|