<em id="rw4ev"></em>

      <tr id="rw4ev"></tr>

      <nav id="rw4ev"></nav>
      <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
      合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

      代寫INFS2044、代做Python設計編程
      代寫INFS2044、代做Python設計編程

      時間:2024-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



      INFS2044 Assignment 2 Case Study 
       
      In this assignment, you will be developing a system for finding images based on the objects 
      present in the images. The system will ingest images, detect objects in the images, and 
      retrieve images based on labels associated with objects and by similarity with an example 
      image. 
       
      Use Cases 
       
      The system supports the following use cases: 
       
      • UC1 Ingest Image: User provides an image, and System stores the image, identifies 
      objects in the image, and records the object types detected in the image in an index. 
       
      • UC2 Retrieve Objects by Description: User specifies a list of object types, and the 
      system returns the images in its index that match those listed. The system shall 
      support two matching modes: 
       
      o ALL: an image matches if and only if an object of each specified type is 
      present in the image 
      o SOME: an image matches if an object of at least one specified type is present 
      in the image 
       
      • UC3 Retrieve Similar Images: User provides an image, and the system retrieves the 
      top K most similar images in order of descending similarity. The provided image may 
      or may not already be in the system. The similarity between two images is 
      determined based on the cosine similarity measure between the object types 
      present in each image. The integer K (K>1) specifies the maximum number of images 
      to retrieve. 
       
      • UC4 List Images: System shows each image and the object types associated with 
      each image in the index. 
       
       
       Example Commands 
       
      The following are example commands that the command line frontend of the system shall 
      implement: 
       
      UC1: 
       
      $ python image_search.py add example_images/image1.jpg 
      Detected objects chair,dining table,potted plant 
       
      $ python image_search.py add example_images/image2.jpg 
      Detected objects car,person,truck 
       
      $ python image_search.py add example_images/image3.jpg 
      Detected objects chair,person 
       
      $ python image_search.py add example_images/image4.jpg 
      Detected objects car 
       
      $ python image_search.py add example_images/image5.jpg 
      Detected objects car,person,traffic light 
       
      $ python image_search.py add example_images/image6.jpg 
      Detected objects chair,couch 
       
      UC2: 
       
      $ python image_search.py search --all car person 
      example_images/image2.jpg: car,person,truck 
      example_images/image5.jpg: car,person,traffic light 
      2 matches found. 
       
      $ python image_search.py search --some car person 
      example_images/image2.jpg: car,person,truck 
      example_images/image3.jpg: chair,person 
      example_images/image4.jpg: car 
      example_images/image5.jpg: car,person,traffic light 
      4 matches found. 
       
      UC3: 
       
      $ python image_search.py similar --k 999 example_images/image3.jpg 
      1.0000 example_images/image3.jpg 
      0.5000 example_images/image6.jpg 
      0.4082 example_images/image1.jpg 
      0.4082 example_images/image2.jpg 
      0.4082 example_images/image5.jpg 
      0.0000 example_images/image4.jpg 
       
      $ python image_search.py similar --k 3 example_images/image3.jpg 
      1.0000 example_images/image3.jpg 
      0.5000 example_images/image6.jpg 0.4082 example_images/image1.jpg 
       
      $ python image_search.py similar example_images/image7.jpg 
      0.5774 example_images/image1.jpg 
       
      UC4: 
       
      $ python image_search.py list 
      example_images/image1.jpg: chair,dining table,potted plant 
      example_images/image2.jpg: car,person,truck 
      example_images/image3.jpg: chair,person 
      example_images/image4.jpg: car 
      example_images/image5.jpg: car,person,traffic light 
      example_images/image6.jpg: chair,couch 
      6 images found. 
       
      Other requirements 
       
      Input File Format 
       
      The system shall be able to read and process images in JPEG format. 
       
      For UC2, you can assume that all labels are entered in lowercase, and labels containing 
      spaces are appropriately surrounded by quotes. 
       
      Output Format 
       
      The output of the system shall conform to the format of the example outputs given above. 
       
      Unless indicated otherwise, the output of the system does not need to be sorted. 
       
      For UC3, the output shall be sorted in descending order of similarity. That is, the most 
      similar matching image and its similarity shall be listed first, followed by the next similar 
      image, etc. 
       
      For UC4, the output shall be sorted in ascending alphabetical order. 
       
      Internal Storage 
       
      You are free to choose either a file-based storage mechanism or an SQLite-based database 
      for the implementation of the Index Access component. 
       
      The index shall store the file path to the image, not the image data itself. 
       
      Object detection 
       The supplied code for object detection can detect ~** object types. 
       
      Future variations 
       
      • Other object detection models (including external cloud-based systems) could be 
      implemented. 
      • Additional object types could be introduced. 
      • Additional query types could be introduced. 
      • Other similarity metrics could be implemented. 
      • Other indexing technologies could be leveraged. 
      • Other output formats (for the same information) could be introduced. 
       
      These variations are not in scope for your implementation in this assignment, but your 
      design must be able to accommodate these extensions largely without modifying the code 
      that you have produced. 
       
      Decomposition 
       
      You must use the following component decomposition as the basis for your implementation 
      design: 
       
      The responsibilities of the elements are as follows: 
       
      Elements Responsibilities 
      Console App Front-end, interact with the user 
      Image Search Manager Orchestrates the use case processes 
      Object Detection Engine Detect objects in an image 
      Matching Engine Finds matching images given the object types 
      Index Access Stores and accesses the indexed images 
      Image Access Read images from the file system 
       
      You may introduce additional components in the architecture, provided that you justify why 
      these additional components are required. 
       
       Scope & Constraints 
       
      Your implementation must respect the boundaries defined by the decomposition and 
      include classes for each of the elements in this decomposition. 
       
      The implementation must: 
      • run using Python 3.10 or higher, and 
      • use only the Python 3.10 standard libraries and the packages listed in the 
      requirements.txt files supplied with this case study, and 
      • not rely on any platform-specific features, and 
      • extend the supplied code, and 
      • correctly implement the functions described in this document, and 
      • it must function correctly with any given input files (you can assume that the entire 
      content of the files fits into main memory), and 
      • it must include a comprehensive unit test suite using pytest, and 
      • adhere to the given decomposition and design principles taught in this course. 
       
      Focus your attention on the quality of the code. 
       
      It is not sufficient to merely create a functionally correct program to pass this assignment. 
      The emphasis is on creating a well-structured, modular, object-oriented design that satisfies 
      the design principles and coding practices discussed in this course. 
       
      Implementation Notes 
       
      You can use the code supplied in module object_detector.py to detect objects in 
      images and to encode the tags associated with an image as a Boolean vector (which you will 
      need to compute the cosine similarity). Do not modify this file. 
       
      You can use the function matplotlib.image.imread to load the image data from a file, and 
      sklearn.metrics.pairwise.cosine_similarity to compute the cosine similarity between two 
      vectors representing lists of tags. 
       
      請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




       

      掃一掃在手機打開當前頁
    1. 上一篇:DSCI 510代寫、代做Python編程語言
    2. 下一篇:代寫FN6806、代做c/c++,Python程序語言
    3. 無相關信息
      合肥生活資訊

      合肥圖文信息
      挖掘機濾芯提升發動機性能
      挖掘機濾芯提升發動機性能
      戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
      戴納斯帝壁掛爐全國售后服務電話24小時官網
      菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
      菲斯曼壁掛爐全國統一400售后維修服務電話2
      美的熱水器售后服務技術咨詢電話全國24小時客服熱線
      美的熱水器售后服務技術咨詢電話全國24小時
      海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
      海信羅馬假日洗衣機亮相AWE 復古美學與現代
      合肥機場巴士4號線
      合肥機場巴士4號線
      合肥機場巴士3號線
      合肥機場巴士3號線
      合肥機場巴士2號線
      合肥機場巴士2號線
    4. 幣安app官網下載 短信驗證碼 丁香花影院

      關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

      Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
      ICP備06013414號-3 公安備 42010502001045

      成人久久18免费网站入口