日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫INFS2044、代做Python設計編程
代寫INFS2044、代做Python設計編程

時間:2024-12-19  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



INFS2044 Assignment 2 Case Study 
 
In this assignment, you will be developing a system for finding images based on the objects 
present in the images. The system will ingest images, detect objects in the images, and 
retrieve images based on labels associated with objects and by similarity with an example 
image. 
 
Use Cases 
 
The system supports the following use cases: 
 
• UC1 Ingest Image: User provides an image, and System stores the image, identifies 
objects in the image, and records the object types detected in the image in an index. 
 
• UC2 Retrieve Objects by Description: User specifies a list of object types, and the 
system returns the images in its index that match those listed. The system shall 
support two matching modes: 
 
o ALL: an image matches if and only if an object of each specified type is 
present in the image 
o SOME: an image matches if an object of at least one specified type is present 
in the image 
 
• UC3 Retrieve Similar Images: User provides an image, and the system retrieves the 
top K most similar images in order of descending similarity. The provided image may 
or may not already be in the system. The similarity between two images is 
determined based on the cosine similarity measure between the object types 
present in each image. The integer K (K>1) specifies the maximum number of images 
to retrieve. 
 
• UC4 List Images: System shows each image and the object types associated with 
each image in the index. 
 
 
 Example Commands 
 
The following are example commands that the command line frontend of the system shall 
implement: 
 
UC1: 
 
$ python image_search.py add example_images/image1.jpg 
Detected objects chair,dining table,potted plant 
 
$ python image_search.py add example_images/image2.jpg 
Detected objects car,person,truck 
 
$ python image_search.py add example_images/image3.jpg 
Detected objects chair,person 
 
$ python image_search.py add example_images/image4.jpg 
Detected objects car 
 
$ python image_search.py add example_images/image5.jpg 
Detected objects car,person,traffic light 
 
$ python image_search.py add example_images/image6.jpg 
Detected objects chair,couch 
 
UC2: 
 
$ python image_search.py search --all car person 
example_images/image2.jpg: car,person,truck 
example_images/image5.jpg: car,person,traffic light 
2 matches found. 
 
$ python image_search.py search --some car person 
example_images/image2.jpg: car,person,truck 
example_images/image3.jpg: chair,person 
example_images/image4.jpg: car 
example_images/image5.jpg: car,person,traffic light 
4 matches found. 
 
UC3: 
 
$ python image_search.py similar --k 999 example_images/image3.jpg 
1.0000 example_images/image3.jpg 
0.5000 example_images/image6.jpg 
0.4082 example_images/image1.jpg 
0.4082 example_images/image2.jpg 
0.4082 example_images/image5.jpg 
0.0000 example_images/image4.jpg 
 
$ python image_search.py similar --k 3 example_images/image3.jpg 
1.0000 example_images/image3.jpg 
0.5000 example_images/image6.jpg 0.4082 example_images/image1.jpg 
 
$ python image_search.py similar example_images/image7.jpg 
0.5774 example_images/image1.jpg 
 
UC4: 
 
$ python image_search.py list 
example_images/image1.jpg: chair,dining table,potted plant 
example_images/image2.jpg: car,person,truck 
example_images/image3.jpg: chair,person 
example_images/image4.jpg: car 
example_images/image5.jpg: car,person,traffic light 
example_images/image6.jpg: chair,couch 
6 images found. 
 
Other requirements 
 
Input File Format 
 
The system shall be able to read and process images in JPEG format. 
 
For UC2, you can assume that all labels are entered in lowercase, and labels containing 
spaces are appropriately surrounded by quotes. 
 
Output Format 
 
The output of the system shall conform to the format of the example outputs given above. 
 
Unless indicated otherwise, the output of the system does not need to be sorted. 
 
For UC3, the output shall be sorted in descending order of similarity. That is, the most 
similar matching image and its similarity shall be listed first, followed by the next similar 
image, etc. 
 
For UC4, the output shall be sorted in ascending alphabetical order. 
 
Internal Storage 
 
You are free to choose either a file-based storage mechanism or an SQLite-based database 
for the implementation of the Index Access component. 
 
The index shall store the file path to the image, not the image data itself. 
 
Object detection 
 The supplied code for object detection can detect ~** object types. 
 
Future variations 
 
• Other object detection models (including external cloud-based systems) could be 
implemented. 
• Additional object types could be introduced. 
• Additional query types could be introduced. 
• Other similarity metrics could be implemented. 
• Other indexing technologies could be leveraged. 
• Other output formats (for the same information) could be introduced. 
 
These variations are not in scope for your implementation in this assignment, but your 
design must be able to accommodate these extensions largely without modifying the code 
that you have produced. 
 
Decomposition 
 
You must use the following component decomposition as the basis for your implementation 
design: 
 
The responsibilities of the elements are as follows: 
 
Elements Responsibilities 
Console App Front-end, interact with the user 
Image Search Manager Orchestrates the use case processes 
Object Detection Engine Detect objects in an image 
Matching Engine Finds matching images given the object types 
Index Access Stores and accesses the indexed images 
Image Access Read images from the file system 
 
You may introduce additional components in the architecture, provided that you justify why 
these additional components are required. 
 
 Scope & Constraints 
 
Your implementation must respect the boundaries defined by the decomposition and 
include classes for each of the elements in this decomposition. 
 
The implementation must: 
• run using Python 3.10 or higher, and 
• use only the Python 3.10 standard libraries and the packages listed in the 
requirements.txt files supplied with this case study, and 
• not rely on any platform-specific features, and 
• extend the supplied code, and 
• correctly implement the functions described in this document, and 
• it must function correctly with any given input files (you can assume that the entire 
content of the files fits into main memory), and 
• it must include a comprehensive unit test suite using pytest, and 
• adhere to the given decomposition and design principles taught in this course. 
 
Focus your attention on the quality of the code. 
 
It is not sufficient to merely create a functionally correct program to pass this assignment. 
The emphasis is on creating a well-structured, modular, object-oriented design that satisfies 
the design principles and coding practices discussed in this course. 
 
Implementation Notes 
 
You can use the code supplied in module object_detector.py to detect objects in 
images and to encode the tags associated with an image as a Boolean vector (which you will 
need to compute the cosine similarity). Do not modify this file. 
 
You can use the function matplotlib.image.imread to load the image data from a file, and 
sklearn.metrics.pairwise.cosine_similarity to compute the cosine similarity between two 
vectors representing lists of tags. 
 
請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp




 

掃一掃在手機打開當前頁
  • 上一篇:DSCI 510代寫、代做Python編程語言
  • 下一篇:代寫FN6806、代做c/c++,Python程序語言
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
    合肥機場巴士2號線
    合肥機場巴士2號線
  • 短信驗證碼 豆包 幣安下載 目錄網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        在线综合欧美| 亚洲国内在线| 国产美女精品一区二区三区| 一区二区三区精品久久久| 亚洲免费观看高清完整版在线观看熊| 一本高清dvd不卡在线观看| 黄色欧美日韩| 国产精品久久久久国产a级| 欧美视频中文字幕在线| 欧美成人一区二区三区在线观看| 免费影视亚洲| 亚洲国产日日夜夜| 国产欧美一区二区三区另类精品| 欧美一区二区三区免费在线看| 国产日产高清欧美一区二区三区| 国产精品久在线观看| 国产毛片精品视频| 久久久久看片| 极品尤物一区二区三区| 欧美国产欧美综合| 欧美日韩爆操| 欧美成人精品三级在线观看| 亚洲欧美日韩在线综合| 国产亚洲精品aa| 欧美日产一区二区三区在线观看| 欧美在线高清视频| 久久精品一区二区三区四区| 国产精品网曝门| 欧美在线免费观看亚洲| 国产精品久久久久久户外露出| 国产精品美女久久久久久2018| 欧美在线播放一区二区| 亚洲欧洲一区二区天堂久久| 一区二区三区在线不卡| 国产精品久久久| 欧美日韩极品在线观看一区| 久久久久久高潮国产精品视| 欧美日韩一区二区视频在线观看| 国内精品久久久久影院优| 欧美亚洲在线| 日韩一区二区精品在线观看| 99re6这里只有精品| 久久露脸国产精品| 噜噜噜91成人网| 久久九九久久九九| 亚洲女人小视频在线观看| 国产精品福利网| 午夜欧美理论片| 欧美日韩国产影片| 亚洲人成啪啪网站| 日韩视频在线一区二区三区| 欧美日韩国产欧美日美国产精品| 亚洲免费高清视频| 欧美精品国产| 久久精品盗摄| 欧美成人一区二免费视频软件| 国产日本欧美一区二区三区在线| 亚洲国产黄色| 国产伦精品一区二区三区视频孕妇| 99精品欧美一区二区三区综合在线| 亚洲伦理久久| 欧美福利一区二区三区| 久久国产精品久久久久久久久久| 欧美激情一区二区三区成人| 国产精品国产三级国产普通话三级| 亚洲欧美精品中文字幕在线| 欧美连裤袜在线视频| 久色成人在线| 久久国产一区二区| 国产精品盗摄一区二区三区| 亚洲淫片在线视频| 中文在线不卡视频| 国产免费观看久久| 久久深夜福利| 国产日韩欧美在线一区| 老鸭窝亚洲一区二区三区| 欧美精品激情blacked18| 欧美精品一区二区三区视频| 欧美一区二区三区在线视频| 欧美揉bbbbb揉bbbbb| 亚洲精品久久久久久下一站| 亚洲一区免费看| 国产欧美在线播放| 亚洲欧美精品中文字幕在线| 欧美日韩在线视频首页| 欧美巨乳在线| 99热精品在线| 1024欧美极品| 国产日韩欧美综合| 国产免费亚洲高清| 久久字幕精品一区| 黄色另类av| 午夜精品免费视频| 久久久久久久精| 99视频超级精品| 极品中文字幕一区| 在线免费一区三区| 欧美成人首页| 欧美一区深夜视频| 激情一区二区三区| 午夜精品亚洲一区二区三区嫩草| 免费国产一区二区| 国产免费成人| 亚洲欧洲精品一区二区精品久久久| 久久一日本道色综合久久| 国产伦精品一区二区三区视频黑人| 国产欧美日本一区视频| 亚洲综合丁香| 国产精品欧美一区二区三区奶水| 亚洲日本无吗高清不卡| 国产欧美一区二区色老头| 欧美日韩的一区二区| 亚洲欧洲精品一区二区三区不卡| 国产精品素人视频| 久久久av网站| 日韩视频精品在线观看| 黑人巨大精品欧美一区二区小视频| 亚洲免费人成在线视频观看| 久久久国产一区二区三区| 日韩亚洲欧美高清| 久久综合色天天久久综合图片| 国产精品video| 国产欧美日韩在线观看| 亚洲天堂视频在线观看| 一本色道久久88综合亚洲精品ⅰ| 欧美在线啊v| 老鸭窝亚洲一区二区三区| 国产精品一区二区视频| 午夜精品亚洲一区二区三区嫩草| 久久久久久久久久久久久女国产乱| 国产精品永久| 欧美视频一区二区三区…| 激情亚洲一区二区三区四区| 亚洲精品视频免费观看| 亚洲一区二区少妇| 亚洲在线成人精品| 亚洲电影一级黄| 美女性感视频久久久| 久久人人97超碰国产公开结果| 国产精品一区免费视频| 久久激情五月婷婷| 午夜精品久久久久久久| 国产精品久久二区| 欧美v亚洲v综合ⅴ国产v| 亚洲女性喷水在线观看一区| 亚洲福利在线观看| 久久精品欧美日韩精品| 亚洲人人精品| 国产精品国产三级国产a| 久久全国免费视频| 欧美日韩第一区| 欧美美女喷水视频| 欧美日韩久久| 欧美精品在线观看一区二区| 一区二区视频免费完整版观看| 欧美精品91| 欧美特黄一区| 欧美视频成人| 亚洲美女精品一区| 国产欧美一区二区三区在线看蜜臀| 香蕉久久一区二区不卡无毒影院| 国产乱人伦精品一区二区| 国产精品美女一区二区| 欧美亚洲尤物久久|