日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做MLE 5217、代寫Python程序設計
代做MLE 5217、代寫Python程序設計

時間:2024-10-23  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Dept. of Materials Science & Engineering NUS
MLE 5217 : Take-Home Assignments
Objectives
Based on the chemical composition of materials build a classiffcation model to distinguish metals and non-metals
(Model 1), and then build a regression model to predict the bandgap of non-metallic compounds (Model 2).
Please use a separate jupyter notebook for each of the models.
Data
The data contains the chemical formula and energy band gaps (in eV) of experimentally measured compounds.
These measurements have been obtained using a number of techniques such as diffuse reffectance, resistivity
measurements, surface photovoltage, photoconduction, and UV-vis measurements. Therefore a given compound
may have more than one measurement value.
Tasks
Model I (30 marks)
Dataset: Classiffcation data.csv
Fit a Support Vector Classiffcation model to separate metals from non-metals in the data. Ensure that you:
• Follow the usual machine learning process.
• Use a suitable composition based feature vector to vectorize the chemical compounds.
• You may use your judgement on how to differentiate between metals & non-metals. As a guide, two possible
options are given below.
Option 1 : for metals Eg = 0, and Non-metals Eg > 0
Option 2: for metals Eg ≤ 0.5, for non-metals Eg > 0.5
• Use suitable metrics to quantify the performance of the classiffer.
• For added advantage you may optimize the hyper-parameters of the Support Vector Classiffer. Note: Optimization
 algorithms can require high processing power, therefore may cause your computer to freeze (Ensure
you have saved all your work before you run such codes). In such a case you may either do a manual
optimization or leave the code without execution.
• Comment on the overall performance of the model.
Model II (30 marks)
Dataset: Regression data.csv
Fit a Regression Equation to the non-metals to predict the bandgap energies based on their chemical composition
• Use a suitable composition based feature vector to vectorize the chemical compounds. You may try multiple
feature vectors and analyse the outcomes.
• You may experiment with different models for regression analysis if required.
• Comment on the overall performance of the model and suggest any short-comings or potential improvements.
September 2024Important : Comments
• Write clear comments in the code so that a user can follow the logic.
• In instances where you have made decisions, justify them.
• In instances where you may have decided to follow a different analysis path (than what is outlined in the
tasks), explain your thinking in the comments.
• Acknowledge (if any) references used at the bottom of the notebook.
Submission
• Ensure that each of the cells of code in the ffnal Jupyter notebooks have been Run for output (Except for
the hyper-parameter optimization if any).
• The two models (I and II) have been entered in two separate notebooks.
• Name the ffles by your name as ”YourName 1.ipynb” and ”YourName 2.ipynb”
• It is your responsibility to Ensure that the correct ffles are being submitted, and the ffle extensions
are in the correct format (.ipynb).
• Submission will be via Canvas, and late submissions will be penalized.
Evaluation
The primary emphasis will be on the depth and thoroughness of your approach to the problem. Key areas of focus
will include:
* Data Exploration: Demonstrating a thorough investigation of the data, exploring different analytical
possibilities, and thoughtfully selecting the best course of action.
* Implementation: Translating your chosen approach into clean and efffcient code.
* Machine Learning Process: Executing the machine learning process correctly and methodically, ensuring
proper data handling, model selection, and evaluation.
* Clarity of Explanation: Providing clear explanations of each step, with logical reasoning for the decisions made.
*Critical Analysis: Identifying any limitations of the approach, suggesting potential improvements, and making
relevant statistical inferences based on the results.
================================================================


請加QQ:99515681  郵箱:99515681@qq.com   WX:codinghelp






 

掃一掃在手機打開當前頁
  • 上一篇:代寫ISAD1000、代做Java/Python程序設計
  • 下一篇:代寫Battleship 、代做Game 設計程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        欧美日韩在线播放一区| 欧美在线亚洲| 久久疯狂做爰流白浆xx| 欧美一区二区三区婷婷月色| 久久黄金**| 欧美激情一区二区三区在线| 老司机午夜精品视频| 国产精品二区在线观看| 亚洲乱码国产乱码精品精| 久久青草福利网站| 亚洲女ⅴideoshd黑人| 国产美女精品视频| 国产精品亚洲视频| 亚洲男人天堂2024| 亚洲一区制服诱惑| 欧美日一区二区在线观看| 国产亚洲欧美色| 蜜臀av性久久久久蜜臀aⅴ四虎| 欧美一二三区在线观看| 亚洲人体大胆视频| 欧美伦理91| 欧美激情久久久久| 欧美精品午夜视频| 欧美一区精品| 国产精品尤物福利片在线观看| 狠狠色噜噜狠狠色综合久| 一本高清dvd不卡在线观看| 国内精品写真在线观看| 亚洲激情在线视频| 美国三级日本三级久久99| 欧美二区在线播放| 国产婷婷精品| 亚洲一区二区伦理| 一区二区久久久久久| 久久国产精品一区二区三区| 欧美成人性生活| 精品99一区二区三区| 蜜臀久久99精品久久久久久9| 欧美小视频在线观看| 一区二区高清在线观看| 欧美另类专区| 99亚洲视频| 亚洲一区二区三区高清不卡| 在线成人性视频| 亚洲日本在线视频观看| 99国内精品久久久久久久软件| 国产视频不卡| 亚洲电影毛片| 亚洲视频免费看| 欧美日韩国产综合网| 亚洲一区二区在线免费观看视频| 欧美成人精品激情在线观看| 黄色一区二区在线观看| 久久免费视频一区| 欧美国产成人精品| 久久久久国产精品午夜一区| 国产亚洲欧美日韩在线一区| 欧美日韩一区不卡| 欧美精品综合| 在线观看成人av| 精品va天堂亚洲国产| 麻豆成人综合网| 一区二区久久| 在线视频中文亚洲| 免费观看久久久4p| 玖玖精品视频| 激情久久中文字幕| 一区二区欧美在线观看| 99re热这里只有精品免费视频| 狠狠色狠狠色综合日日五| 国产农村妇女精品一二区| 久久婷婷国产综合尤物精品| 欧美激情一区二区三级高清视频| 精品99一区二区三区| 欧美成熟视频| 亚洲无线视频| 一区二区三区色| 久久综合色综合88| 亚洲欧美日韩在线高清直播| 欧美日韩妖精视频| 美女日韩在线中文字幕| 精品动漫3d一区二区三区免费版| 欧美aaa级| 日韩视频亚洲视频| 久久久高清一区二区三区| 欧美激情精品久久久久久黑人| 牛牛影视久久网| 亚洲高清资源| 亚洲国产精品电影| 亚洲福利视频在线| 国产日韩欧美中文在线播放| 国产精品日韩电影| 欧美绝品在线观看成人午夜影视| 亚洲午夜成aⅴ人片| 欧美激情精品久久久久久蜜臀| 亚洲一区二区三区高清| 欧美日韩中文另类| 中文一区二区在线观看| 国产视频在线观看一区| 亚洲欧美电影在线观看| 欧美日韩国产亚洲一区| 欧美性猛交视频| 亚洲国产日韩欧美在线99| 国产精品日产欧美久久久久| 久久精品中文字幕一区| 久久色在线播放| 伊人久久亚洲热| 久久精品国产99国产精品澳门| 老鸭窝亚洲一区二区三区| 嫩草伊人久久精品少妇av杨幂| 久热综合在线亚洲精品| 欧美日韩美女一区二区| 一区二区三区**美女毛片| 99国产精品久久| 欧美日韩一区三区四区| 欧美激情久久久| 91久久久久久国产精品| 欧美视频在线观看视频极品| 亚洲精品韩国| 久久高清免费观看| 午夜欧美大片免费观看| 亚洲六月丁香色婷婷综合久久| 欧美视频久久| 国产亚洲欧美一区二区三区| 欧美日韩国产成人高清视频| 欧美一级在线视频| 一色屋精品亚洲香蕉网站| 久久激情综合| 韩国三级电影久久久久久| 99精品视频网| 亚洲视频在线观看一区| 欧美午夜性色大片在线观看| 亚洲精选久久| 亚洲韩国青草视频| 欧美成人在线影院| 伊人狠狠色丁香综合尤物| 久久亚洲精品中文字幕冲田杏梨| 中文av一区二区| 亚洲国产天堂久久综合网| 一区二区三区产品免费精品久久75| 欧美在线视频观看免费网站| 久久久久9999亚洲精品| 免费一级欧美在线大片| 国产欧美日韩综合精品二区| 欧美黄色片免费观看| 欧美成人免费全部| 欧美亚洲午夜视频在线观看| 麻豆精品精华液| 欧美日韩在线电影| 亚洲一级高清| 久久久女女女女999久久| 欧美中文字幕视频在线观看| 这里只有精品视频| 国产精品日韩一区| 欧美私人啪啪vps| 久久深夜福利| 亚洲另类在线一区| 国产精品理论片| 国内自拍视频一区二区三区| 欧美激情二区三区| 欧美裸体一区二区三区| 亚洲欧洲一区二区天堂久久| 国产一区二区三区免费不卡| 久久精品国产96久久久香蕉|