<em id="rw4ev"></em>

      <tr id="rw4ev"></tr>

      <nav id="rw4ev"></nav>
      <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
      合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

      代做ECN6540、代寫Java,c++編程語言

      時間:2024-01-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



      ECN6540  ECN6540 1

      Data Provided:

      Mathematical, Statistical and Financial Tables for the Social Sciences (Kmietowicz
      and Yannoulis).


      DEPARTMENT OF ECONOMICS Autumn Semester 2022/23

      ECN6540 Econometric Methods

      Duration: 2? Hours

      Maximum 1500 words excluding equations


      The answers to the questions must be type-written. The preference is that
      symbols and equations should be inserted into the document using the
      equation editor in Word. Alternatively, they can be scanned and inserted as an
      image (providing it is clear and readable).


      There are two questions, firstly on microeconometrics and secondly on
      macroeconometrics. ANSWER ALL QUESTIONS. The marks shown within each
      question indicate the weighting given to component sections. Any calculations
      must show all workings otherwise full marks will not be awarded.

      ECN654540 2
      MICROECONOMETRICS

      1. The non-mortgage debt behaviour of individuals is modelled using UK
      cross sectional data for 2017 from Understanding Society based upon
      11,**0 employees. The table below describes the variables in the data.


      Variable Definitions
      -----------------------------------------------------------------------------------------------------
      debtor = 1 if has any non-mortgage debt, 0 otherwise
      debt_inc = debt to income ratio (outstanding debt ? annual income)
      work_fin = 1 if employed in financial sector, 0 otherwise
      lincome = natural logarithm of income last month
      ghealth = 1 if currently in good or excellent health, 0 otherwise
      sex = 1 if male, 0=female
      degree = 1 if university degree, 0 = below degree level education
      lsavinv_inc = natural logarithm of saving & investment annual income
      age = age of individual in years
      agesq = age squared
      -----------------------------------------------------------------------------------------------------
      a. The following Stata output shows an analysis of modelling the probability that
      an individual holds non-mortgage debt using a Logit regression.

      logit debtor ib(0).work_fin##c.lincome ghealth sex degree age lsavinv_inc

      Logistic regression Number of obs = 11,**0
      LR chi2(8) = 546.50
      Prob > chi2 = 0.0000
      Log likelihood = -7067.5606 Pseudo R2 = 0.0372

      ----------------------------------------------------------------------------------
      debtor | Coefficient Std. err. z P>|z| [95% conf. interval]
      -------------------+--------------------------------------------------------------
      1.work_fin | 5.43774 1.271821 4.28 0.000 2.945017 7.930462
      lincome | .4584589 .0384631 11.92 0.000 .3830726 .5338451
      |
      work_fin#c.lincome |
      1 | -.6710698 .1587**2 -4.23 0.000 -.9821792 -.3599604
      |
      ghealth | -.0796141 .0413548 -1.93 0.054 -.160668 .0014398
      sex | -.0084802 .0433091 -0.20 0.845 -.0933645 .0764041
      degree | .0795525 .0462392 1.72 0.085 -.0110748 .1701797
      age | -.03164** .0020753 -15.25 0.000 -.0357106 -.0275757
      lsavinv_inc | -.081**22 .0085226 -9.61 0.000 -.0986062 -.0651983
      _cons | -2.638081 .2870575 -9.19 0.000 -3.200703 -2.075458
      ----------------------------------------------------------------------------------

      ib(0).work_fin##c.lincome is an interaction effect between a binary
      and continuous variable. Summary statistics on variables used in the analysis
      are provided below.

      sum ib(0).work_fin##c.lincome ghealth sex degree age lsavinv_inc

      Variable | Obs Mean Std. dev. Min Max
      -------------+---------------------------------------------------------
      1.work_fin | 11,767 .0398572 .1956** 0 11
      lincome | 11,767 7.650333 .6965933 .0**777 9.8**781

      work_fin#|
      c.lincome 1 | 11,767 .3197615 1.574852 0 9.72120
      ECN6540
      ECN6540 3
      ghealth | 11,767 .5457636 .4979224 0 1
      sex | 11,767 .4812612 .49967 0 1
      degree | 11,767 .3192827 .4662186 0 1
      age | 11,767 44.43885 10.39257 18 65
      lsavinv_inc | 11,767 1.85**15 2.600682 0 11.51294
      -------------+---------------------------------------------------------

      i) What do the coefficients of work_fin, lincome and the interaction
      term imply? Explain whether the estimates can be interpreted.
      ii) Showing your calculations in full, find the marginal effects evaluated
      at the mean from the above output.
      iii) Provide an economic interpretation of the marginal effects found in
      (a(ii)).
      iv) Given the pseudo R-squared what is the value of the constrained
      log likelihood function? Show your calculation.

      [10 marks]

      [25 marks]

      [10 marks]

      [5 marks]
      b. There is also information on the amount of debt held as a proportion of
      income. This outcome is modelled using the Heckman sample selection
      estimator. The Stata output is shown below.

      heckman debt_inc age agesq sex degree lsavinv_inc,
      select(debtor = ib(0).work_fin##c.lincome ghealth sex degree age lsavinv_inc)

      Heckman selection model Number of obs = 11,**0
      Wald chi2(5) = 249.22
      Log likelihood = -13437.59 Prob > chi2 = 0.0000
      ------------------------------------------------------------------------------------
      | Coefficient Std. err. z P>|z| [95% conf. interval]
      -----------------------+------------------------------------------------------------
      debt_inc |
      age | -.1341**4 .0629505 -2.13 0.033 -.2575282 -.0107667
      agesq | .0003505 .0001265 2.77 0.006 .0001026 .0005985
      sex | .1517503 .0607726 2.50 0.013 .0**6382 .2708623
      degree | .157981 .0661602 2.39 0.017 .0283095 .2876525
      lsavinv_inc | .1130368 .0124696 9.06 0.000 .0885968 .137**67
      _cons | 9.727016 .2615992 37.18 0.000 9.214291 10.23974
      -----------------------+------------------------------------------------------------
      debtor |
      1.work_fin | 1.130109 .3719515 3.04 0.002 .4010974 1.85912
      lincome | .2965059 .011**74 26.18 0.000 .2743045 .3187072
      |
      work_fin#c.lincome |
      1 | -.1360006 .0461592 -2.95 0.003 -.226**09 -.0455303
      |
      ghealth | -.0106065 .0106393 -1.00 0.319 -.0314592 .0102462
      sex | -.0488**4 .0236997 -2.06 0.039 -.095**4 -.0024229
      degree | -.0369117 .0256652 -1.44 0.150 -.0872146 .01**2
      age | -.016944 .0011782 -14.38 0.000 -.01925** -.0146349
      lsavinv_inc | -.0468348 .00**518 -9.86 0.000 -.0561482 -.**214
      _cons | -1.828795 .0961843 -19.01 0.000 -2.01**12 -1.640277
      -------------------+----------------------------------------------------------------
      lambda | -2.579767 .0**69 -2.656537 -2.502997
      --------------------------------------------------------------------------------

      i) Interpret the estimates in the outcome equation.
      ii) In the context of the above Stata output what does the estimate of
      the inverse Mills ratio (lambda) suggest? What does lambda
      provide an estimate of in terms of the theory?
      [5 marks]


      [15 marks]
      ECN6540
      ECN6540 4



      c.
      iii) What assumption has been made about the covariates
      work_fin, lincome and ghealth in the treatment equation?
      What are the implications if these assumptions are not met? Are
      they individually statistically significant? If these variables are also
      included in the outcome equation explain whether the model is
      identified or not.

      In the context of the above application the following figure shows the
      distribution of debt as a proportion of annual income.

      Describe a situation in which a Tobit specification would be the preferred
      modelling choice rather than a sample selection approach. What
      assumptions would the Tobit modelling approach have to make with
      regard to the   treatment   and   outcome   equations?


      ECN6540
      ECN6540 5
      MACROECONOMETRICS


      2. a.

      The following Stata output is based upon modelling aggregate
      savings as a function of Gross Domestic Product (GDP), both
      measured in constant prices, over time () using data for the U.S.
      over the period 1960 to 2020. The savings function is a double
      logarithmic specification as follows:
      log = 0 + 1log +
      Where log is the natural logarithm of savings and log is the
      natural logarithm of GDP. The Stata output also shows the results
      of ADF tests for savings and GDP. Note that in the output L
      denotes a lag and D a difference.


      regress logS logY

      Source | SS df MS Number of obs = 61
      -------------+------------------------------ F( 1, 59) = 180.39
      Model | 29.3601715 1 29.3601715 Prob > F = 0.0000
      Residual | 9.6029125 59 .**761229 R-squared = 0.7535
      -------------+------------------------------ Adj R-squared = 0.7494
      Total | 38.963084 60 .649384**4 Root MSE = .40344
      ------------------------------------------------------------------------------
      logS | Coef. Std. Err. t P>|t| [95% Conf. Interval]
      -------------+----------------------------------------------------------------
      logY | 1.16096 .0864398 13.43 0.000 .9879948 1.333926
      _cons | -4.00**35 .6**211 -5.84 0.000 -5.38026 -2.63441
      ------------------------------------------------------------------------------

      Durbin-Watson d-statistic( 2, 61) = .7252386
      predict e, resid

      i) Interpret the OLS results. Explain whether the analysis is likely
      to be spurious?
      ii) What do the results of the ADF tests on savings and GDP imply
      at the 5 percent level? Show the test statistic used, the null
      hypothesis tested and the appropriate critical value.
      iii) Explain whether savings and GDP are cointegrated at the 5
      percent level. Explicitly state the null hypothesis, show
      algebraically the estimated test equation based upon the
      output, and provide the appropriate critical value.

      dfuller logS, lag(4) regress

      Augmented Dickey-Fuller test for unit root Number of obs = 56
      ------------------------------------------------------------------------------
      D.logS | Coef. Std. Err. t P>|t| [95% Conf. Interval]
      -------------+----------------------------------------------------------------
      logS |
      L1. | -.129875 .0534553 -2.43 0.019 -.2372431 -.0225069
      LD. | .****003 .099153 2.35 0.022 .0343457 .4**6549
      L2D. | .193**** .0807975 2.40 0.020 .0316167 .3561897
      L3D. | -.0834007 .0858594 -0.97 0.336 -.2558545 .08**53
      L4D. | -.2258198 .0784568 -2.88 0.006 -.3834049 -.0682348
      cons | .7246592 .2840536 2.55 0.014 .1541207 1.295198
      ------------------------------------------------------------------------------

      ECN6540
      ECN654**
      dfuller logY, lag(4) regress

      Augmented Dickey-Fuller test for unit root Number of obs = 56
      ------------------------------------------------------------------------------
      D.logY | Coef. Std. Err. t P>|t| [95% Conf. Interval]
      -------------+----------------------------------------------------------------
      logY |
      L1. | -.0175**9 .0092468 -1.** 0.063 -.0361467 .000999
      LD. | .4530274 .12**37**.51 0.001 .1938**6 .7122072
      L2D. | -.0699222 .1306402 -0.54 0.595 -.3****08 .192**65
      L3D. | -.1351664 .1297451 -1.04 0.303 -.3957672 .1254344
      L4D. | -.17749** .1177561 -1.51 0.138 -.4140149 .05**255
      _cons | .1720878 .076104 2.26 0.028 .0192285 .**49**1
      ------------------------------------------------------------------------------

      dfuller e, lag(4)

      Test Statistic
      ----------------------------
      Z(t) -4.042
      ----------------------------

      b. Explain why the Johansen approach to cointegration may be
      preferable to the Engle-Granger two step approach, in each of the
      following two scenarios:
      i) In the above example (part a) when there are variables in the
      model, i.e. = 2?
      ii) When ?3. In this scenario what is the maximum number of
      cointegrating vectors?

      c. A researcher has modelled the relationship between personal
      consumption expenditure and the money supply as measured by
      M2 based upon a double logarithmic specification as follows:
      log() = 0 + 1log(2) +
      They then build a dynamic forecast of consumption. Two
      alternative models are estimated over the period 1969q1 through
      to 2008q4: Model 1 an ARIMA(1,1,2) and Model 2 an
      ARIMA(1,1,1). Then the researcher forecasts out of sample
      through to 2010q3. The results are shown below along with
      diagnostic statistics.

      i) Based upon the output below for the ARIMA(1,1,1) model draw
      both the ACF and PACF for the AR and MA components.
      ii) Explain whether the models are stationary and invertible, along
      with any potential implications.
      iii) Explain in detail which of the above two models is preferred
      and why. Outline any further analysis you may want to
      undertake giving your reasons.
      請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

      掃一掃在手機打開當前頁
    1. 上一篇:天然鉆石和人工培育鉆石的區別:看看十個主要的區別方法
    2. 下一篇:代投代發EI 檢索 EI會議
    3. 無相關信息
      合肥生活資訊

      合肥圖文信息
      挖掘機濾芯提升發動機性能
      挖掘機濾芯提升發動機性能
      戴納斯帝壁掛爐全國售后服務電話24小時官網400(全國服務熱線)
      戴納斯帝壁掛爐全國售后服務電話24小時官網
      菲斯曼壁掛爐全國統一400售后維修服務電話24小時服務熱線
      菲斯曼壁掛爐全國統一400售后維修服務電話2
      美的熱水器售后服務技術咨詢電話全國24小時客服熱線
      美的熱水器售后服務技術咨詢電話全國24小時
      海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
      海信羅馬假日洗衣機亮相AWE 復古美學與現代
      合肥機場巴士4號線
      合肥機場巴士4號線
      合肥機場巴士3號線
      合肥機場巴士3號線
      合肥機場巴士2號線
      合肥機場巴士2號線
    4. 幣安app官網下載 短信驗證碼 丁香花影院

      關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

      Copyright © 2024 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
      ICP備06013414號-3 公安備 42010502001045

      成人久久18免费网站入口