日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做ECN6540、代寫Java,c++編程語言

時間:2024-01-25  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



ECN6540  ECN6540 1

Data Provided:

Mathematical, Statistical and Financial Tables for the Social Sciences (Kmietowicz
and Yannoulis).


DEPARTMENT OF ECONOMICS Autumn Semester 2022/23

ECN6540 Econometric Methods

Duration: 2? Hours

Maximum 1500 words excluding equations


The answers to the questions must be type-written. The preference is that
symbols and equations should be inserted into the document using the
equation editor in Word. Alternatively, they can be scanned and inserted as an
image (providing it is clear and readable).


There are two questions, firstly on microeconometrics and secondly on
macroeconometrics. ANSWER ALL QUESTIONS. The marks shown within each
question indicate the weighting given to component sections. Any calculations
must show all workings otherwise full marks will not be awarded.

ECN654540 2
MICROECONOMETRICS

1. The non-mortgage debt behaviour of individuals is modelled using UK
cross sectional data for 2017 from Understanding Society based upon
11,**0 employees. The table below describes the variables in the data.


Variable Definitions
-----------------------------------------------------------------------------------------------------
debtor = 1 if has any non-mortgage debt, 0 otherwise
debt_inc = debt to income ratio (outstanding debt ? annual income)
work_fin = 1 if employed in financial sector, 0 otherwise
lincome = natural logarithm of income last month
ghealth = 1 if currently in good or excellent health, 0 otherwise
sex = 1 if male, 0=female
degree = 1 if university degree, 0 = below degree level education
lsavinv_inc = natural logarithm of saving & investment annual income
age = age of individual in years
agesq = age squared
-----------------------------------------------------------------------------------------------------
a. The following Stata output shows an analysis of modelling the probability that
an individual holds non-mortgage debt using a Logit regression.

logit debtor ib(0).work_fin##c.lincome ghealth sex degree age lsavinv_inc

Logistic regression Number of obs = 11,**0
LR chi2(8) = 546.50
Prob > chi2 = 0.0000
Log likelihood = -7067.5606 Pseudo R2 = 0.0372

----------------------------------------------------------------------------------
debtor | Coefficient Std. err. z P>|z| [95% conf. interval]
-------------------+--------------------------------------------------------------
1.work_fin | 5.43774 1.271821 4.28 0.000 2.945017 7.930462
lincome | .4584589 .0384631 11.92 0.000 .3830726 .5****51
|
work_fin#c.lincome |
1 | -.6710698 .1587**2 -4.23 0.000 -.9821792 -.****604
|
ghealth | -.0796141 .0413548 -1.93 0.054 -.160668 .0014398
sex | -.0084802 .0433091 -0.20 0.845 -.0933645 .0764041
degree | .0795525 .0462392 1.72 0.085 -.0110748 .1701797
age | -.03164** .0020753 -15.25 0.000 -.0357106 -.0275757
lsavinv_inc | -.081**22 .00***26 -9.61 0.000 -.0986062 -.0651983
_cons | -2.638081 .2870575 -9.19 0.000 -3.200703 -2.075458
----------------------------------------------------------------------------------

ib(0).work_fin##c.lincome is an interaction effect between a binary
and continuous variable. Summary statistics on variables used in the analysis
are provided below.

sum ib(0).work_fin##c.lincome ghealth sex degree age lsavinv_inc

Variable | Obs Mean Std. dev. Min Max
-------------+---------------------------------------------------------
1.work_fin | 11,767 .0398572 .1956** 0 11
lincome | 11,767 7.650333 .6965933 .0**777 9.8**781

work_fin#|
c.lincome 1 | 11,767 .3197615 1.574*** 0 9.72120
ECN6540
ECN6540 3
ghealth | 11,767 .5457636 .4979224 0 1
sex | 11,767 .4812612 .49967 0 1
degree | 11,767 .3192827 .4662186 0 1
age | 11,767 44.43885 10.39257 18 65
lsavinv_inc | 11,767 1.85**15 2.600682 0 11.51294
-------------+---------------------------------------------------------

i) What do the coefficients of work_fin, lincome and the interaction
term imply? Explain whether the estimates can be interpreted.
ii) Showing your calculations in full, find the marginal effects evaluated
at the mean from the above output.
iii) Provide an economic interpretation of the marginal effects found in
(a(ii)).
iv) Given the pseudo R-squared what is the value of the constrained
log likelihood function? Show your calculation.

[10 marks]

[25 marks]

[10 marks]

[5 marks]
b. There is also information on the amount of debt held as a proportion of
income. This outcome is modelled using the Heckman sample selection
estimator. The Stata output is shown below.

heckman debt_inc age agesq sex degree lsavinv_inc,
select(debtor = ib(0).work_fin##c.lincome ghealth sex degree age lsavinv_inc)

Heckman selection model Number of obs = 11,**0
Wald chi2(5) = 249.22
Log likelihood = -13437.59 Prob > chi2 = 0.0000
------------------------------------------------------------------------------------
| Coefficient Std. err. z P>|z| [95% conf. interval]
-----------------------+------------------------------------------------------------
debt_inc |
age | -.1341**4 .0629505 -2.13 0.033 -.2575282 -.0107667
agesq | .0003505 .0001265 2.77 0.006 .0001026 .0005985
sex | .1517503 .0607726 2.50 0.013 .0**6382 .2708623
degree | .157981 .0661602 2.39 0.017 .0283095 .2876525
lsavinv_inc | .1130368 .0124696 9.06 0.000 .0885968 .137**67
_cons | 9.727016 .2615992 37.18 0.000 9.214291 10.23974
-----------------------+------------------------------------------------------------
debtor |
1.work_fin | 1.130109 .3719515 3.04 0.002 .4010974 1.85912
lincome | .2965059 .011**74 26.18 0.000 .2743045 .3187072
|
work_fin#c.lincome |
1 | -.1360006 .0461592 -2.95 0.003 -.226**09 -.0455303
|
ghealth | -.0106065 .0106393 -1.00 0.319 -.0314592 .0102462
sex | -.0488**4 .0236997 -2.06 0.039 -.095**4 -.0024229
degree | -.0369117 .0256652 -1.44 0.150 -.0872146 .01**2
age | -.016944 .0011782 -14.38 0.000 -.01925** -.0146349
lsavinv_inc | -.0468348 .00**518 -9.86 0.000 -.0561482 -.**214
_cons | -1.828795 .0961843 -19.01 0.000 -2.01**12 -1.640277
-------------------+----------------------------------------------------------------
lambda | -2.579767 .0**69 -2.656537 -2.502997
--------------------------------------------------------------------------------

i) Interpret the estimates in the outcome equation.
ii) In the context of the above Stata output what does the estimate of
the inverse Mills ratio (lambda) suggest? What does lambda
provide an estimate of in terms of the theory?
[5 marks]


[15 marks]
ECN6540
ECN6540 4



c.
iii) What assumption has been made about the covariates
work_fin, lincome and ghealth in the treatment equation?
What are the implications if these assumptions are not met? Are
they individually statistically significant? If these variables are also
included in the outcome equation explain whether the model is
identified or not.

In the context of the above application the following figure shows the
distribution of debt as a proportion of annual income.

Describe a situation in which a Tobit specification would be the preferred
modelling choice rather than a sample selection approach. What
assumptions would the Tobit modelling approach have to make with
regard to the   treatment   and   outcome   equations?


ECN6540
ECN6540 5
MACROECONOMETRICS


2. a.

The following Stata output is based upon modelling aggregate
savings as a function of Gross Domestic Product (GDP), both
measured in constant prices, over time () using data for the U.S.
over the period 1960 to 2020. The savings function is a double
logarithmic specification as follows:
log = 0 + 1log +
Where log is the natural logarithm of savings and log is the
natural logarithm of GDP. The Stata output also shows the results
of ADF tests for savings and GDP. Note that in the output L
denotes a lag and D a difference.


regress logS logY

Source | SS df MS Number of obs = 61
-------------+------------------------------ F( 1, 59) = 180.39
Model | 29.3601715 1 29.3601715 Prob > F = 0.0000
Residual | 9.6029125 59 .**761229 R-squared = 0.7535
-------------+------------------------------ Adj R-squared = 0.7494
Total | 38.963084 60 .649384**4 Root MSE = .40344
------------------------------------------------------------------------------
logS | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
logY | 1.16096 .0864398 13.43 0.000 .9879948 1.333926
_cons | -4.00**35 .6**211 -5.84 0.000 -5.38026 -2.63441
------------------------------------------------------------------------------

Durbin-Watson d-statistic( 2, 61) = .7252386
predict e, resid

i) Interpret the OLS results. Explain whether the analysis is likely
to be spurious?
ii) What do the results of the ADF tests on savings and GDP imply
at the 5 percent level? Show the test statistic used, the null
hypothesis tested and the appropriate critical value.
iii) Explain whether savings and GDP are cointegrated at the 5
percent level. Explicitly state the null hypothesis, show
algebraically the estimated test equation based upon the
output, and provide the appropriate critical value.

dfuller logS, lag(4) regress

Augmented Dickey-Fuller test for unit root Number of obs = 56
------------------------------------------------------------------------------
D.logS | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
logS |
L1. | -.1****5 .0534553 -2.43 0.019 -.2372431 -.0225069
LD. | .****003 .099153 2.35 0.022 .0343457 .4**6549
L2D. | .193**** .0807975 2.40 0.020 .0316167 .3561897
L3D. | -.0***07 .0858594 -0.97 0.336 -.2558545 .08**53
L4D. | -.2258198 .0784568 -2.88 0.006 -.3***49 -.0682348
cons | .7246592 .2840536 2.55 0.014 .1541207 1.295198
------------------------------------------------------------------------------

ECN6540
ECN654**
dfuller logY, lag(4) regress

Augmented Dickey-Fuller test for unit root Number of obs = 56
------------------------------------------------------------------------------
D.logY | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
logY |
L1. | -.0175**9 .0092468 -1.** 0.063 -.0361467 .000999
LD. | .4530274 .12**37**.51 0.001 .1938**6 .7122072
L2D. | -.0699222 .1306402 -0.54 0.595 -.3****08 .192**65
L3D. | -.1351664 .1297451 -1.04 0.303 -.3957672 .1254344
L4D. | -.17749** .1177561 -1.51 0.138 -.4140149 .05**255
_cons | .1720878 .076104 2.26 0.028 .0192285 .**49**1
------------------------------------------------------------------------------

dfuller e, lag(4)

Test Statistic
----------------------------
Z(t) -4.042
----------------------------

b. Explain why the Johansen approach to cointegration may be
preferable to the Engle-Granger two step approach, in each of the
following two scenarios:
i) In the above example (part a) when there are variables in the
model, i.e. = 2?
ii) When ?3. In this scenario what is the maximum number of
cointegrating vectors?

c. A researcher has modelled the relationship between personal
consumption expenditure and the money supply as measured by
M2 based upon a double logarithmic specification as follows:
log() = 0 + 1log(2) +
They then build a dynamic forecast of consumption. Two
alternative models are estimated over the period 1969q1 through
to 2008q4: Model 1 an ARIMA(1,1,2) and Model 2 an
ARIMA(1,1,1). Then the researcher forecasts out of sample
through to 2010q3. The results are shown below along with
diagnostic statistics.

i) Based upon the output below for the ARIMA(1,1,1) model draw
both the ACF and PACF for the AR and MA components.
ii) Explain whether the models are stationary and invertible, along
with any potential implications.
iii) Explain in detail which of the above two models is preferred
and why. Outline any further analysis you may want to
undertake giving your reasons.
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:天然鉆石和人工培育鉆石的區別:看看十個主要的區別方法
  • 下一篇:代投代發EI 檢索 EI會議
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 trae 豆包網頁版入口 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日韩精品一区二区三区高清_久久国产热这里只有精品8_天天做爽夜夜做爽_一本岛在免费一二三区

      <em id="rw4ev"></em>

        <tr id="rw4ev"></tr>

        <nav id="rw4ev"></nav>
        <strike id="rw4ev"><pre id="rw4ev"></pre></strike>
        国产精品少妇自拍| 国内精品久久久| 欧美在线一级va免费观看| 亚洲欧美一区二区精品久久久| 一区二区免费在线播放| 亚洲免费福利视频| 激情六月婷婷综合| 国产精品久久久久永久免费观看| 亚洲日本一区二区| 一区二区三区 在线观看视| 中文精品视频| 香蕉亚洲视频| 欧美在线观看你懂的| 欧美成人午夜激情| 久久久久久国产精品mv| 老妇喷水一区二区三区| 欧美激情一二区| 韩日精品中文字幕| 欧美三级欧美一级| 一本久久精品一区二区| 欧美精品少妇一区二区三区| 国产日本欧美一区二区三区在线| 亚洲一区二区精品在线观看| 99riav1国产精品视频| 久久国产福利国产秒拍| 欧美高清hd18日本| 亚洲一区中文| 国产小视频国产精品| 亚洲一区二区三区成人在线视频精品| 久久国产欧美| 免费视频久久| 亚洲三级观看| 欧美成人免费va影院高清| 国产欧美日韩亚洲一区二区三区| 亚洲国产精品女人久久久| 国产精品都在这里| 亚洲男女毛片无遮挡| 国产婷婷色一区二区三区在线| 久久成人免费电影| 欧美午夜不卡视频| 激情校园亚洲| 亚洲欧美在线视频观看| 国产丝袜一区二区| 极品少妇一区二区三区精品视频| 国产亚洲欧美一区在线观看| 欧美夜福利tv在线| 99综合电影在线视频| 欧美视频中文字幕在线| 亚洲女女做受ⅹxx高潮| 另类天堂av| 亚洲一二三区精品| 国产精品女人久久久久久| 在线一区观看| 在线日本高清免费不卡| 一区二区三区久久精品| 在线日韩日本国产亚洲| 欧美激情精品久久久六区热门| 亚洲香蕉伊综合在人在线视看| 性欧美激情精品| 欧美在线视频在线播放完整版免费观看| 国产美女精品人人做人人爽| 欧美日韩国产综合视频在线观看中文| 久久久久一区二区三区四区| 亚洲伦理精品| 亚洲欧美日韩网| 国产精品乱码人人做人人爱| 亚洲激情小视频| 欧美精品久久一区| 国产主播一区二区三区四区| 欧美日韩免费精品| 性xx色xx综合久久久xx| 免费观看一级特黄欧美大片| 在线观看精品视频| 国产一区二区三区视频在线观看| 99精品国产一区二区青青牛奶| 亚洲精品视频在线观看网站| 欧美国产精品va在线观看| 一区二区av在线| 国产精品久久久91| 午夜精品久久久久久| 久久一区中文字幕| 欧美日韩一二区| 亚洲人成网站在线播| 亚洲一区二区三区涩| 国产在线欧美| 欧美高清hd18日本| 国产日韩高清一区二区三区在线| 欧美亚洲在线播放| 欧美日本一区| 欧美区视频在线观看| 美女精品一区| 亚洲欧美日韩国产一区二区| 国产精品一区二区在线观看| 国产精品久久久一区二区| 欧美一站二站| 国产日韩欧美视频| 日韩视频免费在线观看| 欧美日韩免费高清一区色橹橹| 欧美性大战xxxxx久久久| 这里只有精品视频| 午夜国产精品视频免费体验区| 亚洲一区欧美二区| 在线免费不卡视频| 国内一区二区在线视频观看| 六十路精品视频| 国产日韩欧美一区二区| 亚洲永久在线| 国产精品一二一区| 亚洲毛片av在线| 亚洲欧美日本视频在线观看| 欧美精品一区三区在线观看| 国产精品欧美风情| 欧美成人精品在线观看| 午夜精品久久久久久久久久久| 一本色道久久综合亚洲精品不卡| 国产精品久久久久久亚洲调教| 久久九九有精品国产23| 国产精品久久国产愉拍| 国产亚洲aⅴaaaaaa毛片| 欧美激情1区2区| 一本色道综合亚洲| 亚洲精品欧美| 可以免费看不卡的av网站| 欧美高清视频在线| 国产精品免费一区二区三区在线观看| 欧美一区二区三区婷婷月色| 亚洲一区在线播放| 亚洲激情亚洲| 亚洲精品免费一区二区三区| 亚洲影视综合| 欧美日韩一区二| 国产精品乱码| 亚洲第一区中文99精品| 性欧美videos另类喷潮| 久久亚洲精品视频| 欧美久久久久久蜜桃| 欧美午夜视频在线| 亚洲愉拍自拍另类高清精品| 国产精品久久久久久久久动漫| 欧美精品一区二区三| 夜夜嗨一区二区三区| 欧美一区二区三区免费看| 亚洲福利视频在线| 亚洲欧美日韩综合| 欧美日韩福利视频| 久久躁狠狠躁夜夜爽| 久久夜色精品国产噜噜av| 欧美精品videossex性护士| 欧美色视频在线| 伊人蜜桃色噜噜激情综合| 国产精品黄页免费高清在线观看| 久久精品系列| 欧美日韩国产系列| 欧美激情第8页| 久久亚洲国产精品日日av夜夜| 国产精品久久9| 性欧美在线看片a免费观看| 欧美精品九九| 国产亚洲aⅴaaaaaa毛片| 久久狠狠婷婷| 国产女人精品视频| 亚洲免费在线电影| 亚洲国产成人av好男人在线观看| 蜜桃久久av一区|